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Abstract—Soft continuum robots are highly flexible and adapt-
able, making them ideal for unstructured environments such as
the human body and agriculture. However, their high compliance
and manoeuvrability make them difficult to model, sense, and
control. Current control strategies focus on Cartesian space
control of the end-effector, but few works have explored full-body
control. This study presents a novel image-based deep learning
approach for closed-loop kinematic shape control of soft con-
tinuum robots. The method combines a local inverse kinematics
formulation in the image-space with deep convolutional neural
networks for accurate shape control that is robust to feedback
noise and mechanical changes in the continuum arm. The shape
controller is fast and straightforward to implement; it takes only
a few hours to generate training data, train the network, and
deploy, requiring only a web camera for feedback. This method
offers an intuitive and user-friendly way to control the robot’s
3D shape and configuration through teleoperation using only
2D hand-drawn images of the desired target state without the
need for further user instruction or consideration of the robot’s
kinematics.

I. INTRODUCTION

Soft continuum robots bend continuously along their length
via elastic deformation, making them highly flexible and
adaptable [1]]. They provide high dexterity and manoeuvrabil-
ity over constrained unstructured spaces using fewer actuators
and simple control strategies [2]. This makes them ideal for
robotic exploration [3] and inspection [4f], [5] in constrained
environments, especially in medical applications [6]-[10]. An
example of this type of robot is the STIFF-FLOP, designed for
minimally invasive robotic surgeries (see Fig.[I). However, the
high mechanical adaptability and dexterity of soft continuum
robots present numerous challenges in their control.

Unlike the control of rigid robotics, the control of soft robots
is non-trivial [[11f], [[12f]. Soft continuum arms exhibit large to
infinitely many degrees of freedom with elastic materials that
are highly non-linear, making accurate analytical modelling an
arduous task. Significant variabilities in their design and actu-
ation make the development of a general modelling framework
difficult [13], [14].

Most controllers for soft continuum robots are based on
some kinematics model. Kinematic controllers take on a
steady-state assumption for the soft manipulator, where they
are treated as quasi-static structures. The most common mod-
elling technique used for soft continuum arms is the Constant
Curvature (CC) model, where each section of the arm is
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Fig. 1: Prototype of the soft continuum robot arm used in
this paper emerged from the EU-project STIFF-FLOP. This
version has two segments, that have an overall diameter of
11.5mm and a length of 59 mm. Actuation will result through
pneumatic air pressurisation of three chamber pairs, each has
a diameter of 1.5 mm.

assumed to bend with constant curvature. Hence, the kinematic
shape of the manipulator can be represented by the arm
length, curvature and its angle [[15]—[20]. Piece-wise Constant
Curvature (PCC) is an extension of CC, which treats the shape
of each section itself as a series of finite curved links [21]],
[22]]. These models, however, assume that the manipulator
or its sections are uniform and symmetrical with negligible
external loads or torsion [15]]. More complex models with
increased accuracy have also been proposed such as the
Variable Constant Curvature [23]], [24] (VCC), the Spring-
Mass-Damper model [25]], the Cosserat Rod [26], [27]] and
beam-theory models [16], [28] and Finite Element models
(FEM) [29]-[31]].

Once the forward kinematic model is developed, controllers
can be achieved by inverting the model. For CC models, this
can be done using several differential inverse kinematics (IK)
based approaches [19], [20], [32]]. Similar differential inverse
kinematics-based controllers have also been developed for



PCC [33], [34] and VCC [23] kinematic models. Alterna-
tively, optimization-based methods can be used for solving
the inverse problem [22]]. Camarillo et al. [28]] were able to
achieve configuration open-loop control by direct inversion of
the beam theory kinematics. FEM has demonstrated promise
in accurately modelling and controlling soft systems [29]-
[31]. Nonetheless, their application necessitates pre-existing
computational models of the robot, which may not be readily
accessible, and the need to fine-tune parameters, such as de-
termining the optimal number of nodes, to maintain sufficient
accuracy without sacrificing real-time control frequency.

Kapadia et al. [[17]], [18]] developed the first dynamic closed-
loop controller using a CC-based kinematic model and an
Euler-Lagrangian dynamic model for a soft arm, capable of
controlling the robot in task space. Another example which
uses the CC model with dynamics is the work by Falken-
hahn et al. [35]. They developed a dynamic controller which
optimised a trajectory in terms of time and actuator jerk.
They also developed a controller with feedback linearisation
capable of fast trajectories that minimises dynamical errors
[36]. Della Santina et. al [34] extended PCC-based point mass
models and showed impedance control of the end-effector
for interactions with an unstructured environment. Alqumsan
et. al. [37] introduced a sliding mode dynamical controller
for a simulated Cosserat Rod model. Spinelli et al. [3§]]
utilised Model Predictive Control for the task space control
of a pneumatic continuum robot, which utilised PCC with
augmented Rigid-Body model assumptions.

These model-based controllers are, however, heavily reliant
on the underlying analytical models, which are developed with
numerous assumptions. These can cause large discrepancies
between the model and the physical robot if factors such as
material hysteresis, friction, mechanical asymmetry, torsion,
fabrication imperfections and other external loads are not con-
sidered or compensated for [27], [39]. As a result, researchers
have taken an interest in controllers that are hybrid, combining
analytical models with learning-based approaches, as well as
completely model-free controllers. These types of controllers
utilize real-world data to build internal models and controllers,
requiring minimal to no prior knowledge of the physical robot
arm or the surrounding environment.

Regarding hybrid controllers, Braganza et al. [40] utilized a
combination of a feedforward neural network and a nonlinear
feedback component to create a control strategy that compen-
sates for uncertain dynamics during trajectory tracking without
requiring accurate knowledge of the continuum robot’s dynam-
ical model. QueiBer et al. [41]] combined feedback control with
a feed-forward control that approximates the continuum arm’s
inverse dynamics under equilibrium. They used this technique
for kinesthetic teaching of the robot’s posture. Wang et al. [42]]
implemented a hybrid adaptive control approach that employs
neural networks for learning the robot’s inverse kinematics and
online adaption of PID control parameters for path tracking.
Bruder et al. [43] utilized Koopman-based Model Predictive
Controllers (MPCs) to track trajectories when the manipulator
has an unknown payload. Tang et al. [44] introduced an

iterative learning Model Predictive Control (MPC) method for
soft-bending actuators, using the iterative learning controller
(ILC) to refine the model. Their results demonstrated that their
approach outperformed ILC and MPC independently. Hanh
et al. [45] developed a method which uses dynamic motion
information to refine their FEM’s visco-elastic parameters.
Their approach enabled them to design an open-loop control
strategy in simulation which was executed on a physical soft
robot. However, their work requires the use of expensive
motion capture systems.

For model-free controllers, Yip et al. [46] were one of the
first to introduce a completely model-less controller. They
achieved this through online empirical estimations of the
robot’s Jacobian. Although it allows the robot to navigate
in unstructured environments, it is seemingly limited to the
control of the robot’s tip. Alambeigi et al. [47] estimated the
Jacobian of a continuum arm using the optimisation Broyden
update rule to manipulate a target point on a deformable
material such that it corresponds to the desired point in their
endoscopic camera’s image space. Li et al. [22]] employed
an adaptive Kalman-filter controller for trajectory tracking.
Fuzzy-logic controllers have also been explored [48].

Giorelli et al. [49]], [50] were the first to implement feed-
forward neural networks for learning a one-to-one IK mapping
of the actuator space to the task space. Hence, their controller
is incapable of tolerating redundant solutions for the same
tip position in real soft continuum arms. Rolf et al. [51]]
proposed the use of goal babbling for obtaining movement
samples, which can be used to bootstrap learnt IK solvers. In
the process of generating the samples, a redundancy weighting
scheme is applied to encourage smooth solutions for target
points in the task space. One major issue with learning the
IK is the non-uniqueness of IK solutions which are enclosed
in a concave set, which makes learning global IK intractable.
Thuruthel et al. [52] proposed a formulation which can achieve
direct inversion of FK through linearisation at the current state.
Sahoo et al. [53] expanded on this work by employing a
meta-learning approach to reduce the training sample required
for adapting the network to unknown tip-loading conditions.
Distal learning is another method for inverting the kinematics
of a redundant robot and has been used for soft robots by
Melingui et al. [54]. Learning-based approaches have been
notably effective for dynamic control of soft robots, where
they have been employed for learning an accurate forward
dynamics model [55]-[57] or for directly learning a closed-
loop control policy using reinforcement learning [58]—[60].
Irrespective of the method used to control the soft continuum
robot, be it model-based, model-free, or hybrid models, con-
trol approaches require expensive motion-tracking sensors to
achieve closed-loop control [19], [43]], [52].

A. Related Work

All the works mentioned above focused mainly on task
space/end-effector control of the soft continuum arm. Using
analytical models for controlling the robot’s shape in config-
uration space, through joint space control, requires making



simplifying assumptions. As a result, the robot’s actual shape
may differ from that predicted by the model. Complete au-
thority over the shape of the continuum robot, however, is
critical in scenarios where minimal collisions or whole-arm
path planning are necessary, such as in teleoperated endoscopy
or minimally invasive surgery of the human body [61]], [62].

Shape control of soft continuum robots is a straightforward
problem when simple geometric models are used. Bajo et al.
[63]] showed that the use of both extrinsic and intrinsic sensory
information can lead to better regulation and shape tracking
performance, mitigating the effects of actuation coupling for
a CC model. Wang et al. [39] extended the CC theory with
the Kirchoff elastic rod theory for open-loop shape control
of a continuum robot designed for in-situ aero-engine main-
tenance. Various works have implemented open-loop follow-
the-leader techniques where desired arm configurations based
on CC are traced by extendable robotic arms [64], [65].
Similarly, Santoso et al. [66] investigated the use of CC with a
damped least-squares Jacobian for the closed-loop control of
an origami-based continuum robot to grow into desired shape
configurations.

Bern et al. [67]] created soft “plush” robots which they
modelled using 2D FEM. To control the robots and move
them to a desired 2D position, they developed a simple and
intuitive method of dragging mesh nodes. They then extended
this work to the locomotion control of a 3D soft cable-
driven quadruped robot [68]]. The feasibility of applying their
method to any type of intricate soft robot comprising diverse
and functional materials which give rise to highly irregular
structures, and that employ different types of actuation such as
pneumatics or magnetics [69]], remains uncertain. Such robots
would necessitate a more refined mesh, a greater number of
nodes, and an appropriate computational model [70].

Ouyang et al. [[71] developed a control approach which used
shape correspondence to command the shape of the robot to
a hand-drawn curve provided by the user. Their controller
uses an online estimation of the Jacobian, with the aim of
minimising the error between the desired curve approximated
by cubic spline interpolation and feature points located on
the robot. The shape of the robot is then approximated by
PCC. Hand-drawn shapes are much more intuitive for users
operating the continuum robot.

The development of completely 3D kinematic shape con-
trollers with an intuitive interface would enhance the versatility
of continuum robot arms by enabling direct control to more
complex pose configurations [64]], [|66]]. CC and PCC models
approximate a large degree-of-freedom arm with a lower
dimensional and discretised representation. Extending these
control strategies to more complex geometric models like
Cosserat Rod, however, is not trivial. Although Finite Ele-
ment models show promise, they tend to grow in complexity
when dealing with non-homogeneous structures and functional
materials with various forms of actuation methods. Likewise,
they also require pre-existing computational models. Inversion
of fully 3D kinematic shape models scalable to any arbitrarily
complex robots with appropriate representations of the target

shapes is a challenge yet to be addressed in this field.

To the best of our knowledge, this work presents the first
demonstration of a model-free shape controller for a soft
continuum robot. We propose a deep visual inverse kinematic
model for the shape control of a soft redundant continuum
robotic manipulator. Based on steady-state assumptions and
differential inverse kinematics, a unique methodology of repre-
senting the state of the soft robot as images are presented. The
method offers relatively straightforward and fast learning of
the differential IK without requiring a priori knowledge about
the arm or its environment, such as shape, size and geometry,
actuators, hysteresis, friction and internal loads, mechanical
asymmetry, and torsion. The method takes only 3 hours to
generate motor-babbling data (generation of motion through
random actuation values), train the network, and deploy on a
physical continuum robot.

Furthermore, minimal sensing is needed, requiring only a
simple colour camera to learn the mapping between the actua-
tor space and the proposed configuration space representation.
The generalising ability of the deep visual model enables a
more user-friendly and intuitive method of controlling the
soft manipulator, simply by drawing the desired target shapes
without any prior training on the dataset, or the need for further
user instruction or consideration of the robot’s kinematics.

The next section first explains the formulation of the learn-
ing algorithm in task space, followed by the description of
the image-based extension. Section details the simulated
spring-mass-damper continuum arm on which the image-based
method is trialled to show empirical evidence of the image-
based method’s efficacy, which is given in the section after.
Section [V] then details the physical STIFF-FLOP manipula-
tor and the experimental setup. This is followed by section
showcasing the experimental results. The discussion and
conclusions are given in section [VII

II. MODEL-FREE STATIC CONTROLLER THEORY
A. Learning Cartesian Kinematic Controllers

For soft robots, kinematic relationships can be formulated
using steady-state models [[72f]. At steady-state conditions, the
forward kinematics of a soft robot can be represented as a
surjective function from the actuator space q € R"™ to the task
space x € R™.

x = f(q) )

The actuator space q typically consists of the state of the
actuators of the soft robot (e.g. pneumatic pressure, tendon
forces, etc.). The task space x is typically represented by the
Cartesian end-effector pose.

Learning the inverse of this forward mapping is not trivial
because of the high redundancy in the system. Due to the
high redundancy of a soft CR, there are infinite valid solutions
to the inverse problem. Moreover, these infinite solutions do
not form a convex set, making the direct learning of the
inverse kinematics invalid [52f, [73]]. Direct inversion of the
forward differential kinematics, however, can be done through
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Fig. 2: The convolutional neural network-based kinematic shape controller. The deep network provides the control actions that
iteratively take the robot to the target shape given the current shape and control action.

linearisation at some arbitrary feasible actuator state q°. The
forward differential kinematics can be obtained by taking the
derivative of the forward kinematics at this state (q°):

x=J(q%)q )

Where J is the Jacobian matrix that maps the actuator
velocities ¢ to the end-effector velocities x at state q°. Further
discretization of Equation [2) using Taylor expansion (ignoring
second order terms and above) allows for learning a local
Inverse Kinematics [73]].

Ax = J(q°)Aq 3)

To frame it as a learning problem, this expression can be
expanded and rearranged as:

J(qi)di+1 =~ Xit1 — f(ai) + J(qi)as 4

dit1 = G(Xit1 — X3) + qs &)

Allowing for the mapping (x;+1, qi, X;) — (qi), where G is
the inverse of the Jacobian matrix, q; and q;41 are the actuator
states at the current and the next time steps respectively, and
likewise for task space states x; and x;y;. Training data
can then be obtained through random actuator motion (motor
babbling) ensuring spatial locality (|qi+1 —qi| < &) [52]. This
data can then be learnt by a simple neural network. By provid-
ing the target points as X;41 to the learnt network, the network
outputs, qj4+1 which brings the robot configuration closer to
the target. Repeating the process with the updated q; and x;
will eventually bring the Cartesian end-effector coordinates to
the desired location, providing that the target location is not
physically obstructed and is geometrically reachable, with a
task-space tracking sensor that has reasonable accuracy. This is
the learning equivalent of the resolved motion rate controller,

which also makes the controller robust to inaccuracies in the
learned representation of the Jacobian inverse [74].

B. Learning Kinematic Shape Controllers

The theory described above, which was developed for
controlling the pose of an end-effector in Cartesian space, can
also be applied to other types of task-space representations.
Although control of the tip position is sufficient for many
tasks, due to the redundancy of the system, the resulting shape
of the soft robot is not within our control authority and is heav-
ily influenced by the initial configuration and environmental
constraints. This is problematic in scenarios where a certain
specific shape is required in order to reduce environmental
interactions, such as endoscopic operations [61]], [62], [75].
Additionally, there are several tasks where shape control is
more intuitive for the user, such as in Agritech and other
constrained environments [[77], [78].

Due to the large degrees of freedom for a soft continuum
robot, there is no single method for shape parametrization.
Constant curvature models have largely been used for shape
parametrization, but are based on several simplifying assump-
tions that parametrize the shape of a soft robot using low-
dimensional representations. In this article, we propose the
extension of the data-driven inverse kinematic controller (see
Fig. to take image states as a high-dimensional hyper-
redundant task space representation I. The static images are a
function of the actuator state q € R™ and the environmental
conditions 7).

I=1¢+1" (6)

The region of the image that is dependent on the actuator
variables obeys the static relationships as described in the
previous section.

I = f(q) @)
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Fig. 3: Modular mass-spring-damper continuum arm used for validating the learning-based shape controller.

1= J(q")4 (8)

giv1 = G(I%41 — IY%) + g )

If 19,1 and I9; can be extracted from the observations
of I;11 and I;, then an image based kinematic controller can
be developed. Assuming that a deep network can extract this
information implicitly, the mapping (Tit1,Iqi,Ii) — (Qit1)
can be sampled and learned as before. Note that Iq; is
the transformation of the vector q; into a 2D image array
to ease the concatenation of Ij;;,Iq; and I; as network
inputs. Varying lighting conditions, background noise and
camera displacements, in theory, would not affect the mapping
accuracy as long as I? is visible. Occlusions, hence, would
affect the accuracy of the mapping. Deep convolutional neural
networks are used to learn the image-based differential inverse
kinematics mapping. These networks are excellent at extract-
ing image features from noisy images while exhibiting some
shift and scale invariance [79]]-[81].

III. SIMULATION ENVIRONMENT
A. Simulation Arm

A simulation environment is used to test and validate
the image-based kinematic shape controller. We created a
simulated continuum arm in MATLAB & Simulink using the
Simscape library.

The continuum arm comprises multiple individual modules.
As shown in Fig. 3] each module is a 3-spring-mass structure,
with three springs attached concentrically to a disk with
mass. Each spring is a force-driven spring-damper object
defined by an equilibrium position, and stiffness and damping
coefficients. The stiffness and damping coefficients are set to
relatively high values 10 kNm~! and 10 Nsm ™! respectively,
to minimise any dynamical behaviours. They are driven by
external force inputs from a controller. Each disk has three
degrees of freedom. A translation in Z axis and rotations

about X and Y axis, relative to the previous disk. For our
simulation, we mounted ten modules in total to form two
sections containing five modules. For each section, consecutive
spring receive the same control signal. For example, spring
objects in Spring 1 receive the same control signals. This
was done to conceptually match the real STIFF-FLOP arm
shown in Section [V-A] Our simulation robot was intentionally
created with a distinct geometry, materials, and actuation
mechanism compared to the STIFF-FLOP robot to demon-
strate the image-based inverse kinematic solver’s capability
in controlling vastly different continuum arms. Gravity was
configured to point from the base to the tip, to simulate a
downward mounting arrangement. However, we deliberately
kept the orientations between the robot and the camera to be
different in simulation and in reality to demonstrate that the
controller can effectively operate even when the camera and
the robot have different relative orientations.

B. Simulation Experimental Setup

Training data were obtained through a quasi-static motor
babbling method [73]]. The vector q; holds the individual
actuation values for each of the six springs in the simulation
robot. The actuation input applied to each of the six springs
was limited to 150N to produce an arm configuration with suf-
ficient complexity without causing instability. Random shape
trajectories were generated by adding stochastic force values
Aq to the current force inputs that satisfy 0 < ¢; < 150N
every 5 seconds. A Sigmoid smooth-step function S(t) (Equa-
tion [T0) was multiplied to Aq to ensure smooth trajectories
in the generated training data. This is done to ensure that the
steady-state assumption used in deriving the theory remains
valid.

B a
1+ exp (770%?50))

The parameters a, t5q, t, are used to make the smooth-step
function reach the Aq values over a time period of 3 seconds,

S(t)

(10)



with 0 <t < 5 seconds such that the newly generated random
shape is reached when the value S(t) is equal to 1. The values
used for the parameters a, t50, ¢, are 1, 2, and 1, respectively.
These were determined empirically. Saturation after 3 seconds
was done to include training examples that stabilise to a final
shape.

12000 seconds of motor babbling data was gathered. State
images I were obtained at a rate of 1Hz via screen capture
giving 12000 data samples. The image states were converted to
grey-scale and down-sampled to 128 x 128 to speed up learn-
ing. Actuator image inputs Iq; were obtained by repeatedly
copying the current actuation signals q; into a 2D image array.
This allows us to concatenate the image state and actuator state
easily. The next state I; 1, current state I;, and actuator inputs
Iq; were resized to a height and width of 128 x 128, followed
by concatenation to form an 128 x 128 x 3 input. The six-
element vector q;+1 was kept as is for the data regression
labels.

C. Model-Free Deep Visual Network Inverse Kinematic Solver

The controller uses a bespoke architecture to learn the
mapping (Lit1,Iq;,1;) — (qi) (see Fig. 2). The architecture
was built systematically by incrementally adding convolutional
and ReLu activations layers until the root mean squared error
on a small 10% subset of the training data no longer improved.
The same architecture is then used for real-world experiments.
The network has six regression node outputs for controlling
the six simulation springs q;+1. The control loop for the real
arm is given in Fig. which is similar to the simulation
control block. The only difference is that the control outputs
are fed into the simulation spring objects rather than through
pneumatic regulators.

Training data was split into 10% and 90% for training and
testing, respectively. The network was trained for 1500 epochs
using the Adam optimizer with an initial learning rate of
0.005 at a learning drop rate of 0.99 which drops at every
100 epochs. The state images I;+; and I; were augmented
with random speckle noise, random translations and rotations,
and random occlusions to obstruct the visibility of the target
and feedback states during training to make the controller
more robust to noise. The data was not normalised and no
overfitting was observed. For the experiments, the controller
is run at 10H z, even though the training data was obtained
at 1Hz. It was observed that this strategy led to smoother
trajectories and faster target convergence.

IV. SIMULATION RESULTS

Four simulation experiments were undertaken. During the
experiments, no online changes were made to the network
weights.

The first experiment was to qualitatively verify the image-
based IK controller for random various target shapes taken
randomly from the validation dataset, shown in Fig. 4] During
the experiments, the arm starts from a home configuration
where it is initially straight and all the actuation values are
set to zero. The controller requires multiple steps to converge

to the target shape. Hence, for each case, the controller ran
for 60 seconds to obtain the final resulting shape state. Note
that the IK solutions provided by the controller are not unique.
It is dependent on the initial configuration of the robot, and
hence the controller is more robust to model inaccuracies.

The second experiment was to determine the robustness
of the learned controller to feedback I; translational and
rotational noise to simulate the effect of the camera be-
ing displaced out of position and orientation after learning.
Twenty-five more shapes were gathered to obtain an average
performance of the controller. The overlayed images for these
remaining shapes are given in the supplementary material. For
the translation noise, the feedback images I; were translated
in the X and Y direction. Black pixels were used to pad
the images after translation (see Fig. [5b] for an example).
Results are given in Fig. [6] For the rotational noise, the
feedback images are rotated clockwise and counter-clockwise.
As before, black pixels were used to pad the images after
rotation (see Fig.[5¢|for an example). The results are given in[7]
The state errors were obtained by the image pixel subtraction
of the final resulting state I; to the target state I; ; images and
averaging the absolute of the error image. Note that the non-
augmented final feedback images were used to gather state
errors.

Figures 6] and [7] demonstrate that the controller’s accuracy is
greater in the absence of noise, as evidenced by lower means
and smaller standard deviations. Despite the increased severity
of both types of noise, the fact that their standard deviations
significantly overlap suggests that the controller’s performance
remains unchanged. However, the higher variances indicate
that the performance of the controller with noise is also
dependent on the target shape. Note that no direct intervention
is applied to the network to reduce the error between the
target and the feedback. The error reduction arises implicitly
based on the learning architecture and the sample data used
for learning.

The third experiment was to verify the robustness of the
controller when the feedback images were partially occluded.
For the same twenty-five shapes used in the third experiment,
a black box is added to the feedback state I; to simulate
partial occlusion. Although the black box is placed randomly,
the same pixel position was used for all twenty shapes (see
Fig. [5d] for an example of this occlusion). Results are given
in Table [II From this table it can be seen that the standard
deviations between no noise and occlusion noise overlap
greatly, indicating that the control is robust even when the
feedback is partially-occluded.

The fourth experiment was to verify the robustness of
the controller to viscoelastic changes in the soft material
properties of physical arms such as creep or stress relaxation.
These can occur from usage over time due to periodic strains
and stresses from actuation, which can induce permanent
deformations [82]]. Thus, softening the material over time. To
model this behaviour, we tested the controller on simulations
with reduced spring stiffness. The original simulation stiffness
10kNm~! was reduced in increments of 5% up to 20%
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Fig. 4: Examples of target (in red) and final resulting states (in cyan) using the proposed shape controller. Intersecting regions
are shown in black. The images are taken directly from the convolutional network inputs of size 128 x 128.
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Fig. 5: Examples of the added noise for experiment two (with
translational and rotational) and three (occlusion noise). (a)
Desired target shape. (b) Final feedback state with translational
noise in the X and Y directions. (c) Final feedback state with
rotational noise. (d) Final feedback state with partial occlusion.

TABLE I: Average and standard deviations (o) of the final
state errors for twenty-five shapes without noise and with the
occlusion noise (see Fig.[5d). The state errors are measured by
the image subtraction between state I; and I;; and averaging
the absolute error.

With Occlussion Noise
2.66,0 + 1.38

Without Noise
2.40,0 + 1.00

Average State Error

reduction. Note that 10k Nm ™! is the stiffness used to gather
the motor babbling data. The same target shape was used for
all simulation models with varying stiffness using one of the
shapes in Fig. {] For this particular target shape configuration,
only springs 1, 2 and 6 need to be actuated. From Fig. [§] it
can be seen that the image-based controller can compensate
for the lowered stiffness values by generally reducing the
required spring forces in order to achieve the desired target
shape without requiring any further re-training. Interestingly,

1071

Average Image Error

0 | | | | |
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Pixel Translations in both the X and Y directions

Fig. 6: Average final state errors for twenty-five shapes as the
image state feedback is translated in the X and Y directions.
The error bars are the standard deviations. The state errors are
measured by the image subtraction between state I; and I; 1
and averaging the absolute error.

Average Image Error

c

0 . . . . . )
-6 -4 -2 0 2 4 6

Rotations (Degrees)

Fig. 7: Average final state errors for twenty-five shapes as
the image state feedback is rotated up to positive (counter-
clockwise) and negative (clockwise) 6 degrees. The error bars
are the standard deviations. The state errors are measured by
the image subtraction between state I; and I;; and averaging
the absolute error.



from Table [[I} it can be seen that slightly lower stiffness for
the springs resulted in error reductions of —13.8% and —6.7%
for the 5% and 10% stiffness reductions. The performance of
the controller decreased rapidly at the 20% stiffness reduction
increasing the final state error by 81%. This behaviour is
unlikely to be indicative of the controller’s performance on
other shapes. Nevertheless, it shows the ability of the controller
to accommodate changes in the model’s mechanical properties
(see the upper section of Fig. [8).
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Fig. 8: Final state reached by the controller (top) as the
simulation springs stiffness is decreased to model material
creep. The state errors are measured by the image subtraction
between state I; and I;;; and averaging the absolute error.
Percentage differences in the final state errors relative to the
original spring stiffness are given in

TABLE 1II: Percentage difference of the final state errors
between decreased stiffness models and the original stiffness.
The final state error for each stiffness is measured by the
image subtraction between state I; and I;y; and averaging
the absolute error.

Simulation Model Stiffness (kNm~1)
9.5 9 8.5 8

—6.7

Percentage Error (%) —13.8 12.9 81.1

V. PHYSICAL ENVIRONMENT
A. STIFF-FLOP Continuum Robot
Our proposed static shape controller is implemented on
a miniaturised soft, pneumatically actuated manipulator to

validate and demonstrate its efficacy. The fundamental design
and manufacturing process (as shown in Fig. [0) has been

introduced in an EU FP7 project called STIFF-FLOP [83]-
[83]. Hence, the soft robot in this paper is referred to as the
STIFF-FLOP manipulator, a cylindrical robotic device made
of silicone (Ecoflex 00-50 Supersoft, SmoothOn), with six
fully fibre-reinforced chambers. Two adjacent chambers are
internally connected together via 1mm silicone pipes and
actuated as one chamber pair. The moulds are 3D-printed
using Tough2000 resin (Formlabs Form 3). Following a five-
step fabrication process (as illustrated in Fig. O[a)), the final
robotic manipulator has a diameter of 11.5mm. A central
working channel with a 4.5mm diameter is preserved for
feeding through instruments, e.g., to conduct surgical tasks.
Details on the dimension of the robot can be found in Fig.[9|b).
Two or more manipulators can be connected in series via 3D-
printed connection plates, as shown in Fig. Pfc).

B. Experimental Setup

The STIFF-FLOP continuum arm is mounted upside down
on a table platform (see Fig. [T0). Six SMC regulator valves
rated with a maximum pneumatic output of 0.5M Pa are used
to actuate the robot’s air chambers. An Arduino Mega is
interfaced with six MCP4725 DACs through a multiplexer
for providing the 0 — 10V analogue voltage control inputs
required by the valves. A Lenovo Webcam with a resolution
of 1920 x 1080 is used to capture the image states of the
robot. A workstation with a RTX 3070 graphics unit and an
Intel 17 processor is used for data processing and learning.
The whole platform is placed inside a photo-booth for better
lighting conditions.

Similar to the simulation arm, training data was obtained
through the described quasi-static motor babbling algorithm.
The training data was not augmented to speed up the learning
progress. The maximum control voltage was set to 3V for
all chambers which correspond to 150K Pa, the chamber’s
pressure limit. As before, random shape trajectories were
generated by adding stochastic pressure values Aq multiplied
by the Sigmoid function (Equation [I0) to the current pressure
value q;. The parameters a, t59, t, all had the value of 1.
These were also determined empirically. A new trajectory is
generated every 5 seconds. Due to the multiplexing of the
DAC:s, the fastest control frequency allowable is at 2.7Hz.
The STIFF-FLOP has a tendency to bend more in its lower
module compared to the upper section due to the influence
of gravity on the whole assembly. The upper module also
houses the three actuation pipes of the lower section which
makes it stiffer. Similar to the simulation goal-babbling, state
images I were therefore obtained at a rate of 2.7Hz and
were subsequently down-sampled to 0.27H z for the training
data, resulting in approximately 1200 training images. It took
approximately an hour and 30 minutes to gather the whole
training data including the setup time. The training took
approximately 2 hours using the workstation. The network
takes an average of 0.002 seconds to process the image inputs.
The state images were cropped, grey-scaled, and resized to
128 x 128 followed by concatenation to form the individual
training samples. As done previously with the simulation
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Fig. 9: Details of the miniaturised soft robot referred to as STIFF-FLOP manipulator. (a) The five-step fabrication process.
Step 1: 3D-printed moulds are assembled, with the fibre densely wrapped around the main chamber moulds; Step 2: Ecoflex
00-50 is poured to the mould assembly to make the main body of the robot; Step 3: Ecoflex 00-50 is injected to the chambers
after the removal of the main chamber moulds, smaller moulds are inserted to make the inner layers of the chambers; Step
4: the bottom and top sides are sealed using Dragon Skin 30, after adding the actuation pipes and connecting two adjacent
chambers; Step 5: the moulds are taken apart to complete the fabrication. (b) The dimensions of the final robot prototype.
Three slots are reserved for positioning the actuation pipes. (c) A two-segment robotic manipulator connected in series
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Fig. 10: Experimental setup for controlling the STIFF-FLOP continuum arm.

setup, the output of the network, which corresponds to the
six actuator inputs for the next time step qj4+1, iS used to
update qj. This is then transformed into a 2D matrix of size
128 x 128 (through repeating values) and inserted as a layer
between states I; and I;;; making it feasible to input it back
into the convolutional network controller.
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Fig. 11: Control diagram of the closed-loop kinematic shape
controller.



Target State overlayed with the Final Feedback State

Fig. 12: Examples of the target (in red) and final resulting states (in cyan) using the proposed shape controller on the STIFF-
FLOP arm. Intersecting regions are shown in black. The images are taken directly from the convolutional network inputs of
size 128 x 128. See the supplementary video for the robot trajectories.

The same network architecture and training parameters were
used, however, the network was only trained for 500 epochs
due to the lower number of training samples. The complete
control diagram of the experimental setup with the proposed
CNN IK solver is shown in Fig.[TT} A low pass filter is used on
the output of the IK solver, where the difference between the
predicted force q;4+1 and the current force q; is multiplied by
a small gain value, which is then subsequently added to q;11
to form q; ;. The low pass filter was used to ensure that the
arm remains quasi-static during movement. The current state
I; is obtained via the camera feedback. g 41 1s also fed back
as the current force inputs for the next iteration.

VI. EXPERIMENTAL RESULTS

To test and validate the performance of the image-based IK
solver on the real STIFF-FLOP arm, four experiments were
conducted. The first was to qualitatively validate the controller
for six random trajectories taken from the validation dataset.
Similar to the simulation experiments, the arm starts in a
straight home configuration where all the pressure actuation
input are set to 0V. Fig. [I2] shows the ability of the solver to
generalise IK solutions and reach arbitrary target shapes when
starting from the home position. The CNN IK controller is able
to accurately determine the correct pose of the end-effector,
such as pointing towards or away from the camera, using only
the low-resolution 2D input images and the position of the
grey tip of the robot (see Fig.[0). This grey tip essentially acts
as a feature point. Non-uniqueness of the 3D space projection
to the 2D image plane can occur when the robot is bending
directly away from the camera (where the tip is fully occluded
by the body), however, this issue can be addressed by using
additional feature points and multiple camera views in future
work.

Fig.[T3]shows the average error for the six target shapes over
time. The errors were obtained by using Otsu-thresholding
[86] on I;;; and I; to obtain their masks, and subtracting
the difference (see Fig. [[3p). This was done to remove the
effects of noise caused by the flicker of the camera and the
slight variances in the lighting conditions. These errors were
then normalised and averaged. This metric, however, does have
limitations. As this metric uses image masks, in some cases
such as when the robot is facing directly towards the camera,
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non-unique 3D projections can also occur. However, the six
target shapes shown in Fig.[T2]do retain their uniqueness when
projecting from 3D to 2D, even after obtaining the image
mask. For instance, a posture bending towards the camera
will appear larger. This makes the masking metric suitable for
evaluating the performance of the controllers on the real robot,
and using multiple camera views will enhance its robustness.
In the future, work will be done to further improve this metric
by incorporating 3D shape sensing technologies.

From Fig. [I3] it can be seen that on average, the error
quickly converges at around 10 seconds or 27 time-steps.
The relatively high error standard deviations compared to the
repeatability test in the following experiment (see Fig. [I3k)
shows that the accuracy of the controller is dependent on the
desired target shape. The starting average mask error between
the robot’s straight position and the target shape was 0.0354.
At the final step, the average error value dropped to 0.0133,
which represents a 63% decrease in error. This demonstrates
that the control system was able to successfully match the
target, resulting in a reduction in error as seen in Fig. [I2] It
is important to reiterate that error reduction arises implicitly
based on the learning formulation. However, the error does
not reach zero, as there are minute differences between the
resulting final and the desired target states, as seen from Fig.
[I2] Factors such as the lighting condition, slight changes in the
table position with respect to the camera, sub-optimal learning,
non-linearities in the physical material properties such as
hysteresis, imperfect air sealing, and the non-uniqueness of
the solutions can contribute to the observed error.

Unlike the simulation environment, the real-world data is
filled with noise and variabilities, even with the arm being
contained in a semi-closed system. An example of this is the
differing average lighting intensities between the target and
feedback images for the six shapes given in Fig.[T2] which can
be observed from the histogram in Fig. [T4} From this figure, it
can be seen that the feedback states are generally darker than
the desired target states. From the supplementary video, these
variabilities are even more pronounced. Camera flicker was
found to occur due to the frequency difference between the
camera and the light source. Additionally, the supplementary
video also shows that there are changes in the background
shadows between the target and the camera feedback states
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Fig. 13: Average mask error between the target and the
feedback states for the six target shapes given in Fig. [I2] over
the duration of 60 seconds. Mask errors were obtained by
the image subtraction between I; (feedback) and I, (target)
states after Otsu-thresholding, followed by normalisation and
averaging of the absolute image errors. On average, the
controller converges to the final shape after 10 seconds.

due to misalignments. It is important that the controller is able
to tolerate changes in the lighting condition and background
states, and this is indeed observed in our experimental results.
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Fig. 14: Histogram of the average target and final feedback
images for the six targets in Fig. [I2] Pixel values of the target
and final feedback states were grouped into sub-divisions of
5 resulting in 51 bins. These bins were averaged accordingly
to the six target shapes. On average, the final feedback states
are darker than the target states.

The second experiment was to validate the repeatability of
the controller. Using one of the target shapes from Fig.
given in Fig.[T5p, 10 repeatability tests were performed. Errors
between the current state I; and target state I;; were obtained
using the Otsu-masking subtraction method described before
(see Fig. [I3p). Fig. [I3k shows that although there are slight
variances as it moves towards the target, the arm is able to
converge to a low final error with reasonable precision, as
indicated by the small standard deviations in error. This is
also evident in Fig. [[3d, which highlights the convergence
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of the valve control voltages to their final values. The low
standard deviations of the final states control voltages after
60 seconds as given in Table [[II] also proves the repeatability
of the controller. Higher variability before convergence shows
that the trajectory taken by the soft arm is not unique, even
though the starting condition is the same. For this particular
shape, it takes approximately 30 seconds which corresponds
to 81 time-steps to reach the final shape. Three times longer
than average. This is likely due to the non-unique solutions
generated by the controller. The oscillations in the mean error
are likely due to the imperfect pneumatic sealing, variation
and lighting as well as the other factors mentioned previously.

TABLE III: Means and Standard Deviations of Final Pneu-
matic Voltages for the Repeatability Test in Fig. [T5d

Valve Voltage Mean with Standard Deviation (V)
Valve 1 2.44 +0.05
Valve 2 2.51 £0.03
Valve 3 1.70 £ 0.04
Valve 4 2.61 £0.16
Valve 5 0.69 £0.13
Valve 6 2.39 £0.18

The third experiment was to determine the effects of adding
translation noise to the feedback I; of the solver. In order to
have full accurate control of the translation, image feedback
states were shifted to the right rather than moving the camera
itself. The feedback images are also cropped and padded by
white 255 pixels as they are translated to the right. From Fig.
[T6] despite the loss in accuracy as the feedback states are trans-
lated, the controller remains capable of discovering a solution
that captures the overall form of the target. Note that no data
augmentation was done to the training data of the physical
system to make the controller robust to these translations, and
the emergent behaviour arises from the learning architecture
and data structure.

The fourth and final experiment was to validate the gener-
alisability and applicability of the controller. Here, we provide
hand-drawn targets to the controller rather than actual images
of the robot. Fig. [I7] shows how the hand-dawn target shapes
were made on top of the background image. First, a template
without the arm was created in order to match the image
environment. This template was then loaded into Microsoft
paint. Random target shapes were then created using the line
tools. These images are then given target to the robot. No
retraining is done for the experiment.

Qualitative results for the six random hand-drawn target
trajectories are given in Fig.[T8] Even though the drawn targets
are user-defined without consideration of the robot kinematics,
the controller was still able to achieve qualitatively similar
configurations. We have deliberately kept the hand-drawn
target images ambiguous, omitting tip-like feature points, to
test the generalizability of the network. The solver was also
able to automatically determine a suitable pose for the robot,
despite not being explicitly given in the target states. For
example, in the third image in Fig. [I8] the given target state is
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deviations are given in Table [ITI}
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a short line. As there were no feature points, the controller was
able to reasonably generalise this to a shape that is pointing
away from the camera. Similar to the other experiments, the
controller was also able to reduce the error between the target
and feedback states without any intervention and was also
able to tolerate varying thicknesses in the drawn target shapes.
Overall, this shows the generalizability of the controller due
to the deep learning architecture. This also provides the user
with an intuitive way to control the shape of the soft robot.

VII. DISCUSSION AND CONCLUSIONS

In this article, we introduce an image-based deep-learning
kinematic controller for continuum robots. The controller is
able to realise desired arbitrary target shapes given only
image inputs with high accuracy and minimal errors. Thus,
giving direct authority over not only the robot’s tip but also
its shape and configuration. We have also shown a simple
yet elegant technique of teleoperating the soft continuum
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arm, where 2-D hand-drawn images are used to control the
robot’s 3-D configuration. This is much more user-friendly and
intuitive compared to analytical methods which require plenty
of parameters to define the arc and configuration for each of
the robot’s section [15]], [[16], [I16], [17], [23[, [26]. Hence,
due to the generalizability of deep networks, the controller
is able to realise an appropriate pose given a hand-drawn
target without any user guidance or manual consideration of
the robot’s kinematics.

Our control system has demonstrated its versatility on a
range of continuum robotic manipulators, regardless of their
actuation method, materials, geometry, kinematics, and the
number of degrees of freedom, as evidenced by our simulation
and physical experiments with vastly different robots. This
indicates that the system can be effectively applied to any type
of such manipulator, as long as the network architecture and
training data size are appropriate, and the target shape images
are kinematically feasible. Our method is also applicable to
robotic manipulators with lower degrees such as robotic fingers
or manipulators, provided they are relatively easy to draw.
Similarly, our controller is also able to operate regardless of
the relative orientation between the robot and camera as shown
by our results. Furthermore, our kinematic controller has a
simple learning process, as demonstrated in our results. In our
work, it took approximately 3 hours to generate samples, train
and deploy the controller on the STIFF-FLOP manipulator.
We verified the efficacy and robustness of the image-based
controller in both simulations and in reality. In the simulation,
it was seen that the deep CNN network is able to tolerate
noise in the image feedback such that the desired shape is
reached when trained with data augmentation techniques such
as random translations, rotations and partial obstructions. More
importantly, it was able to compensate for drastic changes in
mechanical properties for up to 15% reduction in stiffness,
whilst maintaining the accuracy of the resulting final shape to
the desired target shape.

In the physical setup, the controller was shown to tolerate
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Fig. 19: Average mask error between the hand-drawn targets
and the feedback states for the six target shapes given in
Fig. [I8] over the duration of 60 seconds. Mask errors were
obtained by the image subtraction between I; (feedback)
and Ij;; (target) states after Otsu-thresholding, followed by
normalisation and averaging of the absolute image errors. On
average, the controller converges to the final shape after 10
seconds.

noise and variabilities such as inconsistent lighting condi-
tions and translational noise in the image feedback inputs
even without any training data augmentation. Based on our
simulation experiments, however, we have shown that data
augmentation can increase the performance of the controller
under the presence of noise. Future work will hence conduct
a more thorough analysis of the optimal level of data augmen-
tation necessary to achieve robustness of physical systems to
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feedback noise. The controller also requires minimal sensors,
needing only an inexpensive and off-the-shelf camera without
requiring any calibration. These are major advantages over
sensors used in current work such as optical markers for end-
effector tracking which are expensive and require calibrations
[52]. As the camera is an external form of sensing, it removes
the need for additional fabrication steps, manual labour, and
the challenges of integrating sensors, particularly in the case
of soft robots. The same applies to the process of adding
sensors to a pre-existing robot. Our controller also eliminates
the requirement for additional steps and algorithms to process
embedded sensing.

Model-based prior works have relied on simplifications
and assumptions such as sectional constant curvature, pure
symmetry in the structure, and minimal to no torsion in the
exhibited actuated shapes. These assumptions severely limit
the possible shape configurations and the scalability to more
complicated continuum arms, hence affecting the accuracy of
shape controllers based on such models [[71]]. Feedback control
in these cases also involves an additional stage, where visual
data has to be segmented and parametrized for comparison
to the analytical model. The advantage of our technique is
the whole use of image-state representations of both the task
and the configuration space. This allows for high-dimensional
and hyper-redundant descriptions of the arm which encodes
all of these inherent yet implicit structural, mechanical and
material properties of the arm, which is wholly controllable
in 2D. Therefore, there is also no need to formulate specific
mappings of the actuator space to the joint space that is typical
of model-based controllers [15]].



Counter-intuitively, the mapping between the shape config-
uration of the arm and the IK solutions is also not unique.
This is greatly affected by the initial starting configuration,
the material and structural properties, the noise in the image
data, and even temporal dependence. For example, the same
target shape is reachable from infinitely many directions. The
ability to tolerate this redundancy is another major advantage
of our local inverse kinematic formulation compared to other
model-free global IK techniques such as goal babbling [51]]
which learn particular and specific solutions to the IK problem
[49]. As shown in Fig. [I5k, there are slight fluctuations in
the trajectory leading to convergence for the same target
shape, occurring between 10 to 30 seconds. This is due to
two physical factors. The pneumatic tubes had slight leaks,
which resulted in unexpected and random vibrations when
the pressure was varied. Additionally, the STIFF-FLOP is
a small silicone-based soft robotic system. Movement is a
dynamic process due to the body’s mass, combined with
the imperfections in the pneumatic system, causing the robot
to act like a 3D pendulum. Despite these fluctuations, our
controller was able to bring the robot to the desired shape
and hold it once it stabilized, which was consistent with our
simulation results where the robot was able to handle changes
in mechanical stiffness (refer to Fig. [§). A direct solution to
this issue of oscillation would be to reduce the low pass filter
gain and the control frequency, at the expense of speed to
convergence.

Enhancements to the shape control accuracy, speed and
robustness can be made to both the control system and
the arm design. One way to improve is by gathering more
training data through image augmentation and a diverse range
of backgrounds and foregrounds typically used in computer
vision. Additionally, using higher-resolution state images and
optimizing the network architecture and hyper-parameters will
increase the controller’s resistance to noise and decrease
steady-state errors. The use of well-established CNN archi-
tectures like ResNet [87]], which have demonstrated effective
performance in noisy environments, will also be taken into
consideration. The control frequency is currently bottle-necked
by the multiplexed DACs. The network takes 2 ms to pro-
cess the image inputs, thus faster control frequencies can be
achieved by replacing DACs with a better stand-alone Digital-
Analog board. With faster control frequencies, our work can
be extended to dynamic shape control by combining image
state representations and convolutional networks with recurrent
neural networks as was done in prior work for continuum
soft robots [55]]. The issue of non-unique projections will
also be addressed using additional feature points as well as
multiple camera views in future work. Data augmentation
would not address the issue of full occlusions, which are
common in medical scenarios such as minimally invasive
surgery or endoscopy. A direct avenue of future research could
be to leverage CT scans previously performed on medical con-
tinuum robots [[88]]. Alternatively, embedded sensors within the
arm that permit 3D shape estimation can also be incorporated.
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