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AbstractÐSoft continuum robots are highly flexible and adapt-
able, making them ideal for unstructured environments such as
the human body and agriculture. However, their high compliance
and manoeuvrability make them difficult to model, sense, and
control. Current control strategies focus on Cartesian space
control of the end-effector, but few works have explored full-body
control. This study presents a novel image-based deep learning
approach for closed-loop kinematic shape control of soft con-
tinuum robots. The method combines a local inverse kinematics
formulation in the image-space with deep convolutional neural
networks for accurate shape control that is robust to feedback
noise and mechanical changes in the continuum arm. The shape
controller is fast and straightforward to implement; it takes only
a few hours to generate training data, train the network, and
deploy, requiring only a web camera for feedback. This method
offers an intuitive and user-friendly way to control the robot’s
3D shape and configuration through teleoperation using only
2D hand-drawn images of the desired target state without the
need for further user instruction or consideration of the robot’s
kinematics.

I. INTRODUCTION

Soft continuum robots bend continuously along their length

via elastic deformation, making them highly flexible and

adaptable [1]. They provide high dexterity and manoeuvrabil-

ity over constrained unstructured spaces using fewer actuators

and simple control strategies [2]. This makes them ideal for

robotic exploration [3] and inspection [4], [5] in constrained

environments, especially in medical applications [6]±[10]. An

example of this type of robot is the STIFF-FLOP, designed for

minimally invasive robotic surgeries (see Fig. 1). However, the

high mechanical adaptability and dexterity of soft continuum

robots present numerous challenges in their control.

Unlike the control of rigid robotics, the control of soft robots

is non-trivial [11], [12]. Soft continuum arms exhibit large to

infinitely many degrees of freedom with elastic materials that

are highly non-linear, making accurate analytical modelling an

arduous task. Significant variabilities in their design and actu-

ation make the development of a general modelling framework

difficult [13], [14].

Most controllers for soft continuum robots are based on

some kinematics model. Kinematic controllers take on a

steady-state assumption for the soft manipulator, where they

are treated as quasi-static structures. The most common mod-

elling technique used for soft continuum arms is the Constant

Curvature (CC) model, where each section of the arm is
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Fig. 1: Prototype of the soft continuum robot arm used in

this paper emerged from the EU-project STIFF-FLOP. This

version has two segments, that have an overall diameter of

11.5mm and a length of 59mm. Actuation will result through

pneumatic air pressurisation of three chamber pairs, each has

a diameter of 1.5mm.

assumed to bend with constant curvature. Hence, the kinematic

shape of the manipulator can be represented by the arm

length, curvature and its angle [15]±[20]. Piece-wise Constant

Curvature (PCC) is an extension of CC, which treats the shape

of each section itself as a series of finite curved links [21],

[22]. These models, however, assume that the manipulator

or its sections are uniform and symmetrical with negligible

external loads or torsion [15]. More complex models with

increased accuracy have also been proposed such as the

Variable Constant Curvature [23], [24] (VCC), the Spring-

Mass-Damper model [25], the Cosserat Rod [26], [27] and

beam-theory models [16], [28] and Finite Element models

(FEM) [29]±[31].

Once the forward kinematic model is developed, controllers

can be achieved by inverting the model. For CC models, this

can be done using several differential inverse kinematics (IK)

based approaches [19], [20], [32]. Similar differential inverse

kinematics-based controllers have also been developed for
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PCC [33], [34] and VCC [23] kinematic models. Alterna-

tively, optimization-based methods can be used for solving

the inverse problem [22]. Camarillo et al. [28] were able to

achieve configuration open-loop control by direct inversion of

the beam theory kinematics. FEM has demonstrated promise

in accurately modelling and controlling soft systems [29]±

[31]. Nonetheless, their application necessitates pre-existing

computational models of the robot, which may not be readily

accessible, and the need to fine-tune parameters, such as de-

termining the optimal number of nodes, to maintain sufficient

accuracy without sacrificing real-time control frequency.

Kapadia et al. [17], [18] developed the first dynamic closed-

loop controller using a CC-based kinematic model and an

Euler-Lagrangian dynamic model for a soft arm, capable of

controlling the robot in task space. Another example which

uses the CC model with dynamics is the work by Falken-

hahn et al. [35]. They developed a dynamic controller which

optimised a trajectory in terms of time and actuator jerk.

They also developed a controller with feedback linearisation

capable of fast trajectories that minimises dynamical errors

[36]. Della Santina et. al [34] extended PCC-based point mass

models and showed impedance control of the end-effector

for interactions with an unstructured environment. Alqumsan

et. al. [37] introduced a sliding mode dynamical controller

for a simulated Cosserat Rod model. Spinelli et al. [38]

utilised Model Predictive Control for the task space control

of a pneumatic continuum robot, which utilised PCC with

augmented Rigid-Body model assumptions.

These model-based controllers are, however, heavily reliant

on the underlying analytical models, which are developed with

numerous assumptions. These can cause large discrepancies

between the model and the physical robot if factors such as

material hysteresis, friction, mechanical asymmetry, torsion,

fabrication imperfections and other external loads are not con-

sidered or compensated for [27], [39]. As a result, researchers

have taken an interest in controllers that are hybrid, combining

analytical models with learning-based approaches, as well as

completely model-free controllers. These types of controllers

utilize real-world data to build internal models and controllers,

requiring minimal to no prior knowledge of the physical robot

arm or the surrounding environment.

Regarding hybrid controllers, Braganza et al. [40] utilized a

combination of a feedforward neural network and a nonlinear

feedback component to create a control strategy that compen-

sates for uncertain dynamics during trajectory tracking without

requiring accurate knowledge of the continuum robot’s dynam-

ical model. Queiûer et al. [41] combined feedback control with

a feed-forward control that approximates the continuum arm’s

inverse dynamics under equilibrium. They used this technique

for kinesthetic teaching of the robot’s posture. Wang et al. [42]

implemented a hybrid adaptive control approach that employs

neural networks for learning the robot’s inverse kinematics and

online adaption of PID control parameters for path tracking.

Bruder et al. [43] utilized Koopman-based Model Predictive

Controllers (MPCs) to track trajectories when the manipulator

has an unknown payload. Tang et al. [44] introduced an

iterative learning Model Predictive Control (MPC) method for

soft-bending actuators, using the iterative learning controller

(ILC) to refine the model. Their results demonstrated that their

approach outperformed ILC and MPC independently. Hanh

et al. [45] developed a method which uses dynamic motion

information to refine their FEM’s visco-elastic parameters.

Their approach enabled them to design an open-loop control

strategy in simulation which was executed on a physical soft

robot. However, their work requires the use of expensive

motion capture systems.

For model-free controllers, Yip et al. [46] were one of the

first to introduce a completely model-less controller. They

achieved this through online empirical estimations of the

robot’s Jacobian. Although it allows the robot to navigate

in unstructured environments, it is seemingly limited to the

control of the robot’s tip. Alambeigi et al. [47] estimated the

Jacobian of a continuum arm using the optimisation Broyden

update rule to manipulate a target point on a deformable

material such that it corresponds to the desired point in their

endoscopic camera’s image space. Li et al. [22] employed

an adaptive Kalman-filter controller for trajectory tracking.

Fuzzy-logic controllers have also been explored [48].

Giorelli et al. [49], [50] were the first to implement feed-

forward neural networks for learning a one-to-one IK mapping

of the actuator space to the task space. Hence, their controller

is incapable of tolerating redundant solutions for the same

tip position in real soft continuum arms. Rolf et al. [51]

proposed the use of goal babbling for obtaining movement

samples, which can be used to bootstrap learnt IK solvers. In

the process of generating the samples, a redundancy weighting

scheme is applied to encourage smooth solutions for target

points in the task space. One major issue with learning the

IK is the non-uniqueness of IK solutions which are enclosed

in a concave set, which makes learning global IK intractable.

Thuruthel et al. [52] proposed a formulation which can achieve

direct inversion of FK through linearisation at the current state.

Sahoo et al. [53] expanded on this work by employing a

meta-learning approach to reduce the training sample required

for adapting the network to unknown tip-loading conditions.

Distal learning is another method for inverting the kinematics

of a redundant robot and has been used for soft robots by

Melingui et al. [54]. Learning-based approaches have been

notably effective for dynamic control of soft robots, where

they have been employed for learning an accurate forward

dynamics model [55]±[57] or for directly learning a closed-

loop control policy using reinforcement learning [58]±[60].

Irrespective of the method used to control the soft continuum

robot, be it model-based, model-free, or hybrid models, con-

trol approaches require expensive motion-tracking sensors to

achieve closed-loop control [19], [43], [52].

A. Related Work

All the works mentioned above focused mainly on task

space/end-effector control of the soft continuum arm. Using

analytical models for controlling the robot’s shape in config-

uration space, through joint space control, requires making
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simplifying assumptions. As a result, the robot’s actual shape

may differ from that predicted by the model. Complete au-

thority over the shape of the continuum robot, however, is

critical in scenarios where minimal collisions or whole-arm

path planning are necessary, such as in teleoperated endoscopy

or minimally invasive surgery of the human body [61], [62].

Shape control of soft continuum robots is a straightforward

problem when simple geometric models are used. Bajo et al.

[63] showed that the use of both extrinsic and intrinsic sensory

information can lead to better regulation and shape tracking

performance, mitigating the effects of actuation coupling for

a CC model. Wang et al. [39] extended the CC theory with

the Kirchoff elastic rod theory for open-loop shape control

of a continuum robot designed for in-situ aero-engine main-

tenance. Various works have implemented open-loop follow-

the-leader techniques where desired arm configurations based

on CC are traced by extendable robotic arms [64], [65].

Similarly, Santoso et al. [66] investigated the use of CC with a

damped least-squares Jacobian for the closed-loop control of

an origami-based continuum robot to grow into desired shape

configurations.

Bern et al. [67] created soft ºplushº robots which they

modelled using 2D FEM. To control the robots and move

them to a desired 2D position, they developed a simple and

intuitive method of dragging mesh nodes. They then extended

this work to the locomotion control of a 3D soft cable-

driven quadruped robot [68]. The feasibility of applying their

method to any type of intricate soft robot comprising diverse

and functional materials which give rise to highly irregular

structures, and that employ different types of actuation such as

pneumatics or magnetics [69], remains uncertain. Such robots

would necessitate a more refined mesh, a greater number of

nodes, and an appropriate computational model [70].

Ouyang et al. [71] developed a control approach which used

shape correspondence to command the shape of the robot to

a hand-drawn curve provided by the user. Their controller

uses an online estimation of the Jacobian, with the aim of

minimising the error between the desired curve approximated

by cubic spline interpolation and feature points located on

the robot. The shape of the robot is then approximated by

PCC. Hand-drawn shapes are much more intuitive for users

operating the continuum robot.

The development of completely 3D kinematic shape con-

trollers with an intuitive interface would enhance the versatility

of continuum robot arms by enabling direct control to more

complex pose configurations [64], [66]. CC and PCC models

approximate a large degree-of-freedom arm with a lower

dimensional and discretised representation. Extending these

control strategies to more complex geometric models like

Cosserat Rod, however, is not trivial. Although Finite Ele-

ment models show promise, they tend to grow in complexity

when dealing with non-homogeneous structures and functional

materials with various forms of actuation methods. Likewise,

they also require pre-existing computational models. Inversion

of fully 3D kinematic shape models scalable to any arbitrarily

complex robots with appropriate representations of the target

shapes is a challenge yet to be addressed in this field.

To the best of our knowledge, this work presents the first

demonstration of a model-free shape controller for a soft

continuum robot. We propose a deep visual inverse kinematic

model for the shape control of a soft redundant continuum

robotic manipulator. Based on steady-state assumptions and

differential inverse kinematics, a unique methodology of repre-

senting the state of the soft robot as images are presented. The

method offers relatively straightforward and fast learning of

the differential IK without requiring a priori knowledge about

the arm or its environment, such as shape, size and geometry,

actuators, hysteresis, friction and internal loads, mechanical

asymmetry, and torsion. The method takes only 3 hours to

generate motor-babbling data (generation of motion through

random actuation values), train the network, and deploy on a

physical continuum robot.

Furthermore, minimal sensing is needed, requiring only a

simple colour camera to learn the mapping between the actua-

tor space and the proposed configuration space representation.

The generalising ability of the deep visual model enables a

more user-friendly and intuitive method of controlling the

soft manipulator, simply by drawing the desired target shapes

without any prior training on the dataset, or the need for further

user instruction or consideration of the robot’s kinematics.

The next section first explains the formulation of the learn-

ing algorithm in task space, followed by the description of

the image-based extension. Section III details the simulated

spring-mass-damper continuum arm on which the image-based

method is trialled to show empirical evidence of the image-

based method’s efficacy, which is given in the section after.

Section V then details the physical STIFF-FLOP manipula-

tor and the experimental setup. This is followed by section

VI showcasing the experimental results. The discussion and

conclusions are given in section VII.

II. MODEL-FREE STATIC CONTROLLER THEORY

A. Learning Cartesian Kinematic Controllers

For soft robots, kinematic relationships can be formulated

using steady-state models [72]. At steady-state conditions, the

forward kinematics of a soft robot can be represented as a

surjective function from the actuator space q ∈ Rn to the task

space x ∈ Rm.

x = f(q) (1)

The actuator space q typically consists of the state of the

actuators of the soft robot (e.g. pneumatic pressure, tendon

forces, etc.). The task space x is typically represented by the

Cartesian end-effector pose.

Learning the inverse of this forward mapping is not trivial

because of the high redundancy in the system. Due to the

high redundancy of a soft CR, there are infinite valid solutions

to the inverse problem. Moreover, these infinite solutions do

not form a convex set, making the direct learning of the

inverse kinematics invalid [52], [73]. Direct inversion of the

forward differential kinematics, however, can be done through
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Fig. 2: The convolutional neural network-based kinematic shape controller. The deep network provides the control actions that

iteratively take the robot to the target shape given the current shape and control action.

linearisation at some arbitrary feasible actuator state q0. The

forward differential kinematics can be obtained by taking the

derivative of the forward kinematics at this state (q0):

ẋ = J(q0)q̇ (2)

Where J is the Jacobian matrix that maps the actuator

velocities q̇ to the end-effector velocities ẋ at state q0. Further

discretization of Equation 2 using Taylor expansion (ignoring

second order terms and above) allows for learning a local

Inverse Kinematics [73].

∆x ≈ J(q0)∆q (3)

To frame it as a learning problem, this expression can be

expanded and rearranged as:

J(qi)qi+1 ≈ xi+1 − f(qi) + J(qi)qi (4)

qi+1 = G(xi+1 − xi) + qi (5)

Allowing for the mapping (xi+1,qi,xi) → (qi), where G is

the inverse of the Jacobian matrix, qi and qi+1 are the actuator

states at the current and the next time steps respectively, and

likewise for task space states xi and xi+1. Training data

can then be obtained through random actuator motion (motor

babbling) ensuring spatial locality (|qi+1−qi| < E) [52]. This

data can then be learnt by a simple neural network. By provid-

ing the target points as xi+1 to the learnt network, the network

outputs, qi+1 which brings the robot configuration closer to

the target. Repeating the process with the updated qi and xi

will eventually bring the Cartesian end-effector coordinates to

the desired location, providing that the target location is not

physically obstructed and is geometrically reachable, with a

task-space tracking sensor that has reasonable accuracy. This is

the learning equivalent of the resolved motion rate controller,

which also makes the controller robust to inaccuracies in the

learned representation of the Jacobian inverse [74].

B. Learning Kinematic Shape Controllers

The theory described above, which was developed for

controlling the pose of an end-effector in Cartesian space, can

also be applied to other types of task-space representations.

Although control of the tip position is sufficient for many

tasks, due to the redundancy of the system, the resulting shape

of the soft robot is not within our control authority and is heav-

ily influenced by the initial configuration and environmental

constraints. This is problematic in scenarios where a certain

specific shape is required in order to reduce environmental

interactions, such as endoscopic operations [61], [62], [75].

Additionally, there are several tasks where shape control is

more intuitive for the user, such as in Agritech [76] and other

constrained environments [77], [78].

Due to the large degrees of freedom for a soft continuum

robot, there is no single method for shape parametrization.

Constant curvature models have largely been used for shape

parametrization, but are based on several simplifying assump-

tions that parametrize the shape of a soft robot using low-

dimensional representations. In this article, we propose the

extension of the data-driven inverse kinematic controller (see

Fig. 2) to take image states as a high-dimensional hyper-

redundant task space representation I. The static images are a

function of the actuator state q ∈ Rn and the environmental

conditions η.

I = Iq + Iη (6)

The region of the image that is dependent on the actuator

variables obeys the static relationships as described in the

previous section.

Iq = f(q) (7)
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Direction of gravity (9.81m/s2)

A single 3-spring-mass module 

Rotations in X and Y axes

 Translation in Z axis
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Tip

Section 1

Section 2
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Spring 4

Spring 2
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Sprin
g 3
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Fig. 3: Modular mass-spring-damper continuum arm used for validating the learning-based shape controller.

İq = J(q0)q̇ (8)

qi+1 = G(Iqi+1 − Iqi) + qi (9)

If Iqi+1 and Iqi can be extracted from the observations

of Ii+1 and Ii, then an image based kinematic controller can

be developed. Assuming that a deep network can extract this

information implicitly, the mapping (Ii+1, Iqi, Ii) → (qi+1)
can be sampled and learned as before. Note that Iqi is

the transformation of the vector qi into a 2D image array

to ease the concatenation of Ii+1, Iqi and Ii as network

inputs. Varying lighting conditions, background noise and

camera displacements, in theory, would not affect the mapping

accuracy as long as Iq is visible. Occlusions, hence, would

affect the accuracy of the mapping. Deep convolutional neural

networks are used to learn the image-based differential inverse

kinematics mapping. These networks are excellent at extract-

ing image features from noisy images while exhibiting some

shift and scale invariance [79]±[81].

III. SIMULATION ENVIRONMENT

A. Simulation Arm

A simulation environment is used to test and validate

the image-based kinematic shape controller. We created a

simulated continuum arm in MATLAB & Simulink using the

Simscape library.

The continuum arm comprises multiple individual modules.

As shown in Fig. 3, each module is a 3-spring-mass structure,

with three springs attached concentrically to a disk with

mass. Each spring is a force-driven spring-damper object

defined by an equilibrium position, and stiffness and damping

coefficients. The stiffness and damping coefficients are set to

relatively high values 10 kNm−1 and 10 Nsm−1 respectively,

to minimise any dynamical behaviours. They are driven by

external force inputs from a controller. Each disk has three

degrees of freedom. A translation in Z axis and rotations

about X and Y axis, relative to the previous disk. For our

simulation, we mounted ten modules in total to form two

sections containing five modules. For each section, consecutive

spring receive the same control signal. For example, spring

objects in Spring 1 receive the same control signals. This

was done to conceptually match the real STIFF-FLOP arm

shown in Section V-A. Our simulation robot was intentionally

created with a distinct geometry, materials, and actuation

mechanism compared to the STIFF-FLOP robot to demon-

strate the image-based inverse kinematic solver’s capability

in controlling vastly different continuum arms. Gravity was

configured to point from the base to the tip, to simulate a

downward mounting arrangement. However, we deliberately

kept the orientations between the robot and the camera to be

different in simulation and in reality to demonstrate that the

controller can effectively operate even when the camera and

the robot have different relative orientations.

B. Simulation Experimental Setup

Training data were obtained through a quasi-static motor

babbling method [73]. The vector qi holds the individual

actuation values for each of the six springs in the simulation

robot. The actuation input applied to each of the six springs

was limited to 150N to produce an arm configuration with suf-

ficient complexity without causing instability. Random shape

trajectories were generated by adding stochastic force values

∆q to the current force inputs that satisfy 0 ≤ qi ≤ 150N
every 5 seconds. A Sigmoid smooth-step function S(t) (Equa-

tion 10) was multiplied to ∆q to ensure smooth trajectories

in the generated training data. This is done to ensure that the

steady-state assumption used in deriving the theory remains

valid.

S(t) =
a

1 + exp
(

−α(t−t50)
tr

) (10)

The parameters a, t50, tr are used to make the smooth-step

function reach the ∆q values over a time period of 3 seconds,
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with 0 ≤ t ≤ 5 seconds such that the newly generated random

shape is reached when the value S(t) is equal to 1. The values

used for the parameters a, t50, tr are 1, 2, and 1, respectively.

These were determined empirically. Saturation after 3 seconds

was done to include training examples that stabilise to a final

shape.

12000 seconds of motor babbling data was gathered. State

images I were obtained at a rate of 1Hz via screen capture

giving 12000 data samples. The image states were converted to

grey-scale and down-sampled to 128× 128 to speed up learn-

ing. Actuator image inputs Iqi were obtained by repeatedly

copying the current actuation signals qi into a 2D image array.

This allows us to concatenate the image state and actuator state

easily. The next state Ii+1, current state Ii, and actuator inputs

Iqi were resized to a height and width of 128×128, followed

by concatenation to form an 128 × 128 × 3 input. The six-

element vector qi+1 was kept as is for the data regression

labels.

C. Model-Free Deep Visual Network Inverse Kinematic Solver

The controller uses a bespoke architecture to learn the

mapping (Ii+1, Iqi, Ii) → (qi) (see Fig. 2). The architecture

was built systematically by incrementally adding convolutional

and ReLu activations layers until the root mean squared error

on a small 10% subset of the training data no longer improved.

The same architecture is then used for real-world experiments.

The network has six regression node outputs for controlling

the six simulation springs qi+1. The control loop for the real

arm is given in Fig. 11, which is similar to the simulation

control block. The only difference is that the control outputs

are fed into the simulation spring objects rather than through

pneumatic regulators.

Training data was split into 10% and 90% for training and

testing, respectively. The network was trained for 1500 epochs

using the Adam optimizer with an initial learning rate of

0.005 at a learning drop rate of 0.99 which drops at every

100 epochs. The state images Ii+1 and Ii were augmented

with random speckle noise, random translations and rotations,

and random occlusions to obstruct the visibility of the target

and feedback states during training to make the controller

more robust to noise. The data was not normalised and no

overfitting was observed. For the experiments, the controller

is run at 10Hz, even though the training data was obtained

at 1Hz. It was observed that this strategy led to smoother

trajectories and faster target convergence.

IV. SIMULATION RESULTS

Four simulation experiments were undertaken. During the

experiments, no online changes were made to the network

weights.

The first experiment was to qualitatively verify the image-

based IK controller for random various target shapes taken

randomly from the validation dataset, shown in Fig. 4. During

the experiments, the arm starts from a home configuration

where it is initially straight and all the actuation values are

set to zero. The controller requires multiple steps to converge

to the target shape. Hence, for each case, the controller ran

for 60 seconds to obtain the final resulting shape state. Note

that the IK solutions provided by the controller are not unique.

It is dependent on the initial configuration of the robot, and

hence the controller is more robust to model inaccuracies.

The second experiment was to determine the robustness

of the learned controller to feedback Ii translational and

rotational noise to simulate the effect of the camera be-

ing displaced out of position and orientation after learning.

Twenty-five more shapes were gathered to obtain an average

performance of the controller. The overlayed images for these

remaining shapes are given in the supplementary material. For

the translation noise, the feedback images Ii were translated

in the X and Y direction. Black pixels were used to pad

the images after translation (see Fig. 5b for an example).

Results are given in Fig. 6. For the rotational noise, the

feedback images are rotated clockwise and counter-clockwise.

As before, black pixels were used to pad the images after

rotation (see Fig. 5c for an example). The results are given in 7.

The state errors were obtained by the image pixel subtraction

of the final resulting state Ii to the target state Ii+1 images and

averaging the absolute of the error image. Note that the non-

augmented final feedback images were used to gather state

errors.

Figures 6 and 7 demonstrate that the controller’s accuracy is

greater in the absence of noise, as evidenced by lower means

and smaller standard deviations. Despite the increased severity

of both types of noise, the fact that their standard deviations

significantly overlap suggests that the controller’s performance

remains unchanged. However, the higher variances indicate

that the performance of the controller with noise is also

dependent on the target shape. Note that no direct intervention

is applied to the network to reduce the error between the

target and the feedback. The error reduction arises implicitly

based on the learning architecture and the sample data used

for learning.

The third experiment was to verify the robustness of the

controller when the feedback images were partially occluded.

For the same twenty-five shapes used in the third experiment,

a black box is added to the feedback state Ii to simulate

partial occlusion. Although the black box is placed randomly,

the same pixel position was used for all twenty shapes (see

Fig. 5d for an example of this occlusion). Results are given

in Table I. From this table it can be seen that the standard

deviations between no noise and occlusion noise overlap

greatly, indicating that the control is robust even when the

feedback is partially-occluded.

The fourth experiment was to verify the robustness of

the controller to viscoelastic changes in the soft material

properties of physical arms such as creep or stress relaxation.

These can occur from usage over time due to periodic strains

and stresses from actuation, which can induce permanent

deformations [82]. Thus, softening the material over time. To

model this behaviour, we tested the controller on simulations

with reduced spring stiffness. The original simulation stiffness

10kNm−1 was reduced in increments of 5% up to 20%
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Target State overlayed with the Final Feedback State in Simulation

Fig. 4: Examples of target (in red) and final resulting states (in cyan) using the proposed shape controller. Intersecting regions

are shown in black. The images are taken directly from the convolutional network inputs of size 128× 128.

(a) (b)

(c) (d)

Fig. 5: Examples of the added noise for experiment two (with

translational and rotational) and three (occlusion noise). (a)

Desired target shape. (b) Final feedback state with translational

noise in the X and Y directions. (c) Final feedback state with

rotational noise. (d) Final feedback state with partial occlusion.

TABLE I: Average and standard deviations (σ) of the final

state errors for twenty-five shapes without noise and with the

occlusion noise (see Fig. 5d). The state errors are measured by

the image subtraction between state Ii and Ii+1 and averaging

the absolute error.

Without Noise With Occlussion Noise

Average State Error 2.40, σ ± 1.00 2.66, σ ± 1.38

reduction. Note that 10kNm−1 is the stiffness used to gather

the motor babbling data. The same target shape was used for

all simulation models with varying stiffness using one of the

shapes in Fig. 4. For this particular target shape configuration,

only springs 1, 2 and 6 need to be actuated. From Fig. 8, it

can be seen that the image-based controller can compensate

for the lowered stiffness values by generally reducing the

required spring forces in order to achieve the desired target

shape without requiring any further re-training. Interestingly,
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Fig. 6: Average final state errors for twenty-five shapes as the

image state feedback is translated in the X and Y directions.

The error bars are the standard deviations. The state errors are

measured by the image subtraction between state Ii and Ii+1

and averaging the absolute error.
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Fig. 7: Average final state errors for twenty-five shapes as

the image state feedback is rotated up to positive (counter-

clockwise) and negative (clockwise) 6 degrees. The error bars

are the standard deviations. The state errors are measured by

the image subtraction between state Ii and Ii+1 and averaging

the absolute error.
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from Table II, it can be seen that slightly lower stiffness for

the springs resulted in error reductions of −13.8% and −6.7%
for the 5% and 10% stiffness reductions. The performance of

the controller decreased rapidly at the 20% stiffness reduction

increasing the final state error by 81%. This behaviour is

unlikely to be indicative of the controller’s performance on

other shapes. Nevertheless, it shows the ability of the controller

to accommodate changes in the model’s mechanical properties

(see the upper section of Fig. 8).

Fig. 8: Final state reached by the controller (top) as the

simulation springs stiffness is decreased to model material

creep. The state errors are measured by the image subtraction

between state Ii and Ii+1 and averaging the absolute error.

Percentage differences in the final state errors relative to the

original spring stiffness are given in II.

TABLE II: Percentage difference of the final state errors

between decreased stiffness models and the original stiffness.

The final state error for each stiffness is measured by the

image subtraction between state Ii and Ii+1 and averaging

the absolute error.

Simulation Model Stiffness (kNm
−1)

9.5 9 8.5 8

Percentage Error (%) −13.8 −6.7 12.9 81.1

V. PHYSICAL ENVIRONMENT

A. STIFF-FLOP Continuum Robot

Our proposed static shape controller is implemented on

a miniaturised soft, pneumatically actuated manipulator to

validate and demonstrate its efficacy. The fundamental design

and manufacturing process (as shown in Fig. 9) has been

introduced in an EU FP7 project called STIFF-FLOP [83]±

[85]. Hence, the soft robot in this paper is referred to as the

STIFF-FLOP manipulator, a cylindrical robotic device made

of silicone (Ecoflex 00-50 Supersoft, SmoothOn), with six

fully fibre-reinforced chambers. Two adjacent chambers are

internally connected together via 1mm silicone pipes and

actuated as one chamber pair. The moulds are 3D-printed

using Tough2000 resin (Formlabs Form 3). Following a five-

step fabrication process (as illustrated in Fig. 9(a)), the final

robotic manipulator has a diameter of 11.5mm. A central

working channel with a 4.5mm diameter is preserved for

feeding through instruments, e.g., to conduct surgical tasks.

Details on the dimension of the robot can be found in Fig. 9(b).

Two or more manipulators can be connected in series via 3D-

printed connection plates, as shown in Fig. 9(c).

B. Experimental Setup

The STIFF-FLOP continuum arm is mounted upside down

on a table platform (see Fig. 10). Six SMC regulator valves

rated with a maximum pneumatic output of 0.5MPa are used

to actuate the robot’s air chambers. An Arduino Mega is

interfaced with six MCP4725 DACs through a multiplexer

for providing the 0 − 10V analogue voltage control inputs

required by the valves. A Lenovo Webcam with a resolution

of 1920 × 1080 is used to capture the image states of the

robot. A workstation with a RTX 3070 graphics unit and an

Intel i7 processor is used for data processing and learning.

The whole platform is placed inside a photo-booth for better

lighting conditions.

Similar to the simulation arm, training data was obtained

through the described quasi-static motor babbling algorithm.

The training data was not augmented to speed up the learning

progress. The maximum control voltage was set to 3V for

all chambers which correspond to 150KPa, the chamber’s

pressure limit. As before, random shape trajectories were

generated by adding stochastic pressure values ∆q multiplied

by the Sigmoid function (Equation 10) to the current pressure

value qi. The parameters a, t50, tr all had the value of 1.

These were also determined empirically. A new trajectory is

generated every 5 seconds. Due to the multiplexing of the

DACs, the fastest control frequency allowable is at 2.7Hz.

The STIFF-FLOP has a tendency to bend more in its lower

module compared to the upper section due to the influence

of gravity on the whole assembly. The upper module also

houses the three actuation pipes of the lower section which

makes it stiffer. Similar to the simulation goal-babbling, state

images I were therefore obtained at a rate of 2.7Hz and

were subsequently down-sampled to 0.27Hz for the training

data, resulting in approximately 1200 training images. It took

approximately an hour and 30 minutes to gather the whole

training data including the setup time. The training took

approximately 2 hours using the workstation. The network

takes an average of 0.002 seconds to process the image inputs.

The state images were cropped, grey-scaled, and resized to

128 × 128 followed by concatenation to form the individual

training samples. As done previously with the simulation
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Fig. 9: Details of the miniaturised soft robot referred to as STIFF-FLOP manipulator. (a) The five-step fabrication process.

Step 1: 3D-printed moulds are assembled, with the fibre densely wrapped around the main chamber moulds; Step 2: Ecoflex

00-50 is poured to the mould assembly to make the main body of the robot; Step 3: Ecoflex 00-50 is injected to the chambers

after the removal of the main chamber moulds, smaller moulds are inserted to make the inner layers of the chambers; Step

4: the bottom and top sides are sealed using Dragon Skin 30, after adding the actuation pipes and connecting two adjacent

chambers; Step 5: the moulds are taken apart to complete the fabrication. (b) The dimensions of the final robot prototype.

Three slots are reserved for positioning the actuation pipes. (c) A two-segment robotic manipulator connected in series

Platform

Camera

Connection

to Air Mains

Supply

Microcontroller

CA Pneumatic 

Control Tubes

Voltage DACs

Proportional Valves

Continuum 

Arm (CA)

≈10cm

Fig. 10: Experimental setup for controlling the STIFF-FLOP continuum arm.

setup, the output of the network, which corresponds to the

six actuator inputs for the next time step qi+1, is used to

update qi. This is then transformed into a 2D matrix of size

128 × 128 (through repeating values) and inserted as a layer

between states Ii and Ii+1 making it feasible to input it back

into the convolutional network controller.

CNN IK 

Solver

Pneumatic 

Regulators

Continuum 
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Visual 
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Fig. 11: Control diagram of the closed-loop kinematic shape

controller.
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Target State overlayed with the Final Feedback State

Fig. 12: Examples of the target (in red) and final resulting states (in cyan) using the proposed shape controller on the STIFF-

FLOP arm. Intersecting regions are shown in black. The images are taken directly from the convolutional network inputs of

size 128× 128. See the supplementary video for the robot trajectories.

The same network architecture and training parameters were

used, however, the network was only trained for 500 epochs

due to the lower number of training samples. The complete

control diagram of the experimental setup with the proposed

CNN IK solver is shown in Fig. 11. A low pass filter is used on

the output of the IK solver, where the difference between the

predicted force qi+1 and the current force qi is multiplied by

a small gain value, which is then subsequently added to qi+1

to form q′

i+1. The low pass filter was used to ensure that the

arm remains quasi-static during movement. The current state

Ii is obtained via the camera feedback. q′

i+1 is also fed back

as the current force inputs for the next iteration.

VI. EXPERIMENTAL RESULTS

To test and validate the performance of the image-based IK

solver on the real STIFF-FLOP arm, four experiments were

conducted. The first was to qualitatively validate the controller

for six random trajectories taken from the validation dataset.

Similar to the simulation experiments, the arm starts in a

straight home configuration where all the pressure actuation

input are set to 0V . Fig. 12 shows the ability of the solver to

generalise IK solutions and reach arbitrary target shapes when

starting from the home position. The CNN IK controller is able

to accurately determine the correct pose of the end-effector,

such as pointing towards or away from the camera, using only

the low-resolution 2D input images and the position of the

grey tip of the robot (see Fig. 9). This grey tip essentially acts

as a feature point. Non-uniqueness of the 3D space projection

to the 2D image plane can occur when the robot is bending

directly away from the camera (where the tip is fully occluded

by the body), however, this issue can be addressed by using

additional feature points and multiple camera views in future

work.

Fig. 13 shows the average error for the six target shapes over

time. The errors were obtained by using Otsu-thresholding

[86] on Ii+1 and Ii to obtain their masks, and subtracting

the difference (see Fig. 15b). This was done to remove the

effects of noise caused by the flicker of the camera and the

slight variances in the lighting conditions. These errors were

then normalised and averaged. This metric, however, does have

limitations. As this metric uses image masks, in some cases

such as when the robot is facing directly towards the camera,

non-unique 3D projections can also occur. However, the six

target shapes shown in Fig. 12 do retain their uniqueness when

projecting from 3D to 2D, even after obtaining the image

mask. For instance, a posture bending towards the camera

will appear larger. This makes the masking metric suitable for

evaluating the performance of the controllers on the real robot,

and using multiple camera views will enhance its robustness.

In the future, work will be done to further improve this metric

by incorporating 3D shape sensing technologies.

From Fig. 13, it can be seen that on average, the error

quickly converges at around 10 seconds or 27 time-steps.

The relatively high error standard deviations compared to the

repeatability test in the following experiment (see Fig. 15c)

shows that the accuracy of the controller is dependent on the

desired target shape. The starting average mask error between

the robot’s straight position and the target shape was 0.0354.

At the final step, the average error value dropped to 0.0133,

which represents a 63% decrease in error. This demonstrates

that the control system was able to successfully match the

target, resulting in a reduction in error as seen in Fig. 12. It

is important to reiterate that error reduction arises implicitly

based on the learning formulation. However, the error does

not reach zero, as there are minute differences between the

resulting final and the desired target states, as seen from Fig.

12. Factors such as the lighting condition, slight changes in the

table position with respect to the camera, sub-optimal learning,

non-linearities in the physical material properties such as

hysteresis, imperfect air sealing, and the non-uniqueness of

the solutions can contribute to the observed error.

Unlike the simulation environment, the real-world data is

filled with noise and variabilities, even with the arm being

contained in a semi-closed system. An example of this is the

differing average lighting intensities between the target and

feedback images for the six shapes given in Fig. 12, which can

be observed from the histogram in Fig. 14. From this figure, it

can be seen that the feedback states are generally darker than

the desired target states. From the supplementary video, these

variabilities are even more pronounced. Camera flicker was

found to occur due to the frequency difference between the

camera and the light source. Additionally, the supplementary

video also shows that there are changes in the background

shadows between the target and the camera feedback states
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Fig. 13: Average mask error between the target and the

feedback states for the six target shapes given in Fig. 12 over

the duration of 60 seconds. Mask errors were obtained by

the image subtraction between Ii (feedback) and Ii+1 (target)

states after Otsu-thresholding, followed by normalisation and

averaging of the absolute image errors. On average, the

controller converges to the final shape after 10 seconds.

due to misalignments. It is important that the controller is able

to tolerate changes in the lighting condition and background

states, and this is indeed observed in our experimental results.
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Fig. 14: Histogram of the average target and final feedback

images for the six targets in Fig. 12. Pixel values of the target

and final feedback states were grouped into sub-divisions of

5 resulting in 51 bins. These bins were averaged accordingly

to the six target shapes. On average, the final feedback states

are darker than the target states.

The second experiment was to validate the repeatability of

the controller. Using one of the target shapes from Fig. 12,

given in Fig. 15a, 10 repeatability tests were performed. Errors

between the current state Ii and target state Ii+1 were obtained

using the Otsu-masking subtraction method described before

(see Fig. 15b). Fig. 15c shows that although there are slight

variances as it moves towards the target, the arm is able to

converge to a low final error with reasonable precision, as

indicated by the small standard deviations in error. This is

also evident in Fig. 15d, which highlights the convergence

of the valve control voltages to their final values. The low

standard deviations of the final states control voltages after

60 seconds as given in Table III also proves the repeatability

of the controller. Higher variability before convergence shows

that the trajectory taken by the soft arm is not unique, even

though the starting condition is the same. For this particular

shape, it takes approximately 30 seconds which corresponds

to 81 time-steps to reach the final shape. Three times longer

than average. This is likely due to the non-unique solutions

generated by the controller. The oscillations in the mean error

are likely due to the imperfect pneumatic sealing, variation

and lighting as well as the other factors mentioned previously.

TABLE III: Means and Standard Deviations of Final Pneu-

matic Voltages for the Repeatability Test in Fig. 15d

Valve Voltage Mean with Standard Deviation (V)

Valve 1 2.44± 0.05
Valve 2 2.51± 0.03
Valve 3 1.70± 0.04
Valve 4 2.61± 0.16
Valve 5 0.69± 0.13
Valve 6 2.39± 0.18

The third experiment was to determine the effects of adding

translation noise to the feedback Ii of the solver. In order to

have full accurate control of the translation, image feedback

states were shifted to the right rather than moving the camera

itself. The feedback images are also cropped and padded by

white 255 pixels as they are translated to the right. From Fig.

16, despite the loss in accuracy as the feedback states are trans-

lated, the controller remains capable of discovering a solution

that captures the overall form of the target. Note that no data

augmentation was done to the training data of the physical

system to make the controller robust to these translations, and

the emergent behaviour arises from the learning architecture

and data structure.

The fourth and final experiment was to validate the gener-

alisability and applicability of the controller. Here, we provide

hand-drawn targets to the controller rather than actual images

of the robot. Fig. 17 shows how the hand-dawn target shapes

were made on top of the background image. First, a template

without the arm was created in order to match the image

environment. This template was then loaded into Microsoft

paint. Random target shapes were then created using the line

tools. These images are then given target to the robot. No

retraining is done for the experiment.

Qualitative results for the six random hand-drawn target

trajectories are given in Fig. 18. Even though the drawn targets

are user-defined without consideration of the robot kinematics,

the controller was still able to achieve qualitatively similar

configurations. We have deliberately kept the hand-drawn

target images ambiguous, omitting tip-like feature points, to

test the generalizability of the network. The solver was also

able to automatically determine a suitable pose for the robot,

despite not being explicitly given in the target states. For

example, in the third image in Fig. 18, the given target state is
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Fig. 15: Repeatability of the IK CNN solver for an example target shape. (a) Target state (left) and resulting final state (right).

(b) Shape state masks for calculating the errors. (c) Average mask errors of 10 repeatability tests over 60 seconds. (d) Average

control voltage of the 10 repeatability tests for the six proportional regulator valves. The final voltage means and standard

deviations are given in Table III.

Target State overlayed with Translated Feedback States

No translation 5 Pixels 10 Pixels

15 Pixels 30 Pixels 50 Pixels

Fig. 16: Resulting final shape states for an example trajectory

after translating the image feedback states Ii to the right in

the X direction.

a short line. As there were no feature points, the controller was

able to reasonably generalise this to a shape that is pointing

away from the camera. Similar to the other experiments, the

controller was also able to reduce the error between the target

and feedback states without any intervention and was also

able to tolerate varying thicknesses in the drawn target shapes.

Overall, this shows the generalizability of the controller due

to the deep learning architecture. This also provides the user

with an intuitive way to control the shape of the soft robot.

VII. DISCUSSION AND CONCLUSIONS

In this article, we introduce an image-based deep-learning

kinematic controller for continuum robots. The controller is

able to realise desired arbitrary target shapes given only

image inputs with high accuracy and minimal errors. Thus,

giving direct authority over not only the robot’s tip but also

its shape and configuration. We have also shown a simple

yet elegant technique of teleoperating the soft continuum

arm, where 2-D hand-drawn images are used to control the

robot’s 3-D configuration. This is much more user-friendly and

intuitive compared to analytical methods which require plenty

of parameters to define the arc and configuration for each of

the robot’s section [15], [16], [16], [17], [23], [26]. Hence,

due to the generalizability of deep networks, the controller

is able to realise an appropriate pose given a hand-drawn

target without any user guidance or manual consideration of

the robot’s kinematics.

Our control system has demonstrated its versatility on a

range of continuum robotic manipulators, regardless of their

actuation method, materials, geometry, kinematics, and the

number of degrees of freedom, as evidenced by our simulation

and physical experiments with vastly different robots. This

indicates that the system can be effectively applied to any type

of such manipulator, as long as the network architecture and

training data size are appropriate, and the target shape images

are kinematically feasible. Our method is also applicable to

robotic manipulators with lower degrees such as robotic fingers

or manipulators, provided they are relatively easy to draw.

Similarly, our controller is also able to operate regardless of

the relative orientation between the robot and camera as shown

by our results. Furthermore, our kinematic controller has a

simple learning process, as demonstrated in our results. In our

work, it took approximately 3 hours to generate samples, train

and deploy the controller on the STIFF-FLOP manipulator.

We verified the efficacy and robustness of the image-based

controller in both simulations and in reality. In the simulation,

it was seen that the deep CNN network is able to tolerate

noise in the image feedback such that the desired shape is

reached when trained with data augmentation techniques such

as random translations, rotations and partial obstructions. More

importantly, it was able to compensate for drastic changes in

mechanical properties for up to 15% reduction in stiffness,

whilst maintaining the accuracy of the resulting final shape to

the desired target shape.

In the physical setup, the controller was shown to tolerate
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1. Load in background template with manipulator

edited out into Microsoft's Paint3D

2. Use the line tools to create

the desired target shape 

3. Edit the line into the desired

target shape state 

Fig. 17: Steps for the hand-drawn target shapes.

Drawn Target State overlayed with the Final Feedback State

Fig. 18: Examples of the drawn target (in red) and final resulting states (in cyan) from the CNN controller using the STIFF-FLOP

arm.
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Fig. 19: Average mask error between the hand-drawn targets

and the feedback states for the six target shapes given in

Fig. 18 over the duration of 60 seconds. Mask errors were

obtained by the image subtraction between Ii (feedback)

and Ii+1 (target) states after Otsu-thresholding, followed by

normalisation and averaging of the absolute image errors. On

average, the controller converges to the final shape after 10

seconds.

noise and variabilities such as inconsistent lighting condi-

tions and translational noise in the image feedback inputs

even without any training data augmentation. Based on our

simulation experiments, however, we have shown that data

augmentation can increase the performance of the controller

under the presence of noise. Future work will hence conduct

a more thorough analysis of the optimal level of data augmen-

tation necessary to achieve robustness of physical systems to

feedback noise. The controller also requires minimal sensors,

needing only an inexpensive and off-the-shelf camera without

requiring any calibration. These are major advantages over

sensors used in current work such as optical markers for end-

effector tracking which are expensive and require calibrations

[52]. As the camera is an external form of sensing, it removes

the need for additional fabrication steps, manual labour, and

the challenges of integrating sensors, particularly in the case

of soft robots. The same applies to the process of adding

sensors to a pre-existing robot. Our controller also eliminates

the requirement for additional steps and algorithms to process

embedded sensing.

Model-based prior works have relied on simplifications

and assumptions such as sectional constant curvature, pure

symmetry in the structure, and minimal to no torsion in the

exhibited actuated shapes. These assumptions severely limit

the possible shape configurations and the scalability to more

complicated continuum arms, hence affecting the accuracy of

shape controllers based on such models [71]. Feedback control

in these cases also involves an additional stage, where visual

data has to be segmented and parametrized for comparison

to the analytical model. The advantage of our technique is

the whole use of image-state representations of both the task

and the configuration space. This allows for high-dimensional

and hyper-redundant descriptions of the arm which encodes

all of these inherent yet implicit structural, mechanical and

material properties of the arm, which is wholly controllable

in 2D. Therefore, there is also no need to formulate specific

mappings of the actuator space to the joint space that is typical

of model-based controllers [15].
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Counter-intuitively, the mapping between the shape config-

uration of the arm and the IK solutions is also not unique.

This is greatly affected by the initial starting configuration,

the material and structural properties, the noise in the image

data, and even temporal dependence. For example, the same

target shape is reachable from infinitely many directions. The

ability to tolerate this redundancy is another major advantage

of our local inverse kinematic formulation compared to other

model-free global IK techniques such as goal babbling [51]

which learn particular and specific solutions to the IK problem

[49]. As shown in Fig. 15c, there are slight fluctuations in

the trajectory leading to convergence for the same target

shape, occurring between 10 to 30 seconds. This is due to

two physical factors. The pneumatic tubes had slight leaks,

which resulted in unexpected and random vibrations when

the pressure was varied. Additionally, the STIFF-FLOP is

a small silicone-based soft robotic system. Movement is a

dynamic process due to the body’s mass, combined with

the imperfections in the pneumatic system, causing the robot

to act like a 3D pendulum. Despite these fluctuations, our

controller was able to bring the robot to the desired shape

and hold it once it stabilized, which was consistent with our

simulation results where the robot was able to handle changes

in mechanical stiffness (refer to Fig. 8). A direct solution to

this issue of oscillation would be to reduce the low pass filter

gain and the control frequency, at the expense of speed to

convergence.

Enhancements to the shape control accuracy, speed and

robustness can be made to both the control system and

the arm design. One way to improve is by gathering more

training data through image augmentation and a diverse range

of backgrounds and foregrounds typically used in computer

vision. Additionally, using higher-resolution state images and

optimizing the network architecture and hyper-parameters will

increase the controller’s resistance to noise and decrease

steady-state errors. The use of well-established CNN archi-

tectures like ResNet [87], which have demonstrated effective

performance in noisy environments, will also be taken into

consideration. The control frequency is currently bottle-necked

by the multiplexed DACs. The network takes 2 ms to pro-

cess the image inputs, thus faster control frequencies can be

achieved by replacing DACs with a better stand-alone Digital-

Analog board. With faster control frequencies, our work can

be extended to dynamic shape control by combining image

state representations and convolutional networks with recurrent

neural networks as was done in prior work for continuum

soft robots [55]. The issue of non-unique projections will

also be addressed using additional feature points as well as

multiple camera views in future work. Data augmentation

would not address the issue of full occlusions, which are

common in medical scenarios such as minimally invasive

surgery or endoscopy. A direct avenue of future research could

be to leverage CT scans previously performed on medical con-

tinuum robots [88]. Alternatively, embedded sensors within the

arm that permit 3D shape estimation can also be incorporated.
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