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Abstract— Soft continuum robots, fabricated from elas-
tomeric materials, offer unparalleled flexibility and adaptabil-
ity, making them ideal for applications such as minimally
invasive surgery and inspections in constrained environments.
With the miniaturization of imaging technologies and the
development of novel control algorithms, these devices provide
exceptional opportunities to visualize the internal structures of
the human body. However, there are still challenges in accu-
rately estimating external forces applied to these systems using
current technologies. Adding additional sensors is challenging
without compromising the softness of the device. This work
presents a visual deformation-based force sensing framework
for soft continuum robots. The core idea behind this work
is that point loads lead to unique deformation profiles in
an actuated soft-bodied robot. We introduce a Convolutional
Neural Network-based tip force estimation method that utilizes
arbitrarily placed camera images and actuation inputs to pre-
dict applied tip forces. Experimental validation was performed
using the STIFF-FLOP robot, a pneumatically actuated soft
robot developed for minimally invasive surgery. Our vision-
based force estimation model demonstrated a sensing precision
of 0.05 N in the XY plane during testing, with data collection
and training taking only 70 minutes.

I. INTRODUCTION

With their unique flexibility and adaptability, continuum
robots have found applications ranging from minimally inva-
sive surgery to inspections in constrained environments [1],
[2], [3]. A soft continuum robot epitomizes a particular de-
sign within continuum robots, constructed entirely from elas-
tomeric materials, achieving shape control via pneumatic or
hydraulic chambers in its elongated components [4]. While
their remarkable dexterity makes them highly sought after
for surgical robots, they also present significant challenges in
external force sensing, a critical aspect for control and safety
[5], [6]. This challenge has spurred numerous research efforts
aimed at developing specialized force estimation methods
tailored for continuum robots.

Model-based techniques, grounded in kinematics and stat-
ics, have been devised using mathematical models of their
motions to estimate external forces from observed states
or deformations [7], [8], [9]. A common model used for
this assumes that the deformation of the soft robot to an
arc of constant curvature [10]. Xu et al.[11] developed a
force-sensing strategy by crafting a kinetostatic model using
the constant curvature model and backbone tracking of a
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Fig. 1. Vision-based external force estimation. A) The pneumatically
actuated soft robot (STIFF-FLOP) used for this study. B) Given an actuator
input and external force input, the robot reaches a unique configuration
statically, which, if observable, can be used to solve the inverse problem.

continuum robot. Rucker et al. extended this approach using
only end-effector poses and an extended Kalman Filter [12].
In 2015, Khoshnam et al. proposed a kinematic model, using
local shaft curvature and images to measure robot shape
and forces[13]. To better simplify the models, Hasanzadeh
et al. [14] proposed a low-dimensional quasi-static model
adept at solving the inverse problem, while Bajo et al.
[15] proposed a hybrid motion/force controller using similar
constant curvature based kinetostatic models. While model-
based approaches have displayed potential for these intrinsic
force estimation, their usage remains restricted to simple
robotic systems, lacks generalizability, and necessitates an
arduous calibration process.

Recent years have seen a surge in studies resorting to di-
rect force sensing solutions. For instance, some harness fibre
Bragg grating (FBG) sensors for shape or force detection,
though they are temperature sensitivity and adds additional
complexity to the design [16], [17], [18]. Optical transducers
have also been used to develop accurate force sensors [19].
Truby et al.[20] developed a sensing skin that can be installed
on the body surface of continuum robots to measure the
environment contact forces directly. Haraguchi et al.[21] de-
veloped a force-sensing algorithm based on pneumatic cylin-
ders and achieved three-axis sensing of translational forces.
By gauging changes in magnetic fields, Hall Effect sensors
have provided a force sensing method by measuring robot
bending and deformation information [22]. However, all
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of these methods necessitate auxiliary sensing apparatuses,
potentially impinging on the robot’s inherent flexibility and
size—a drawback in applications demanding stringent size
and flexibility constraints, like Minimally Invasive Surgery
[7].

Emerging deep learning techniques have also prompted
researchers to explore hybrid force estimation strategies that
incorporate machine vision [23]. Haouchine et al.[24] present
methods for vision-based force estimation in surgical robotic
systems by detecting tissue deformation. However, this ap-
proach relies on external information from the environment,
which is not easily accessible. Feng et al.[23] developed a
method to estimate a robot’s tip force by measuring tension
and tendons’ position. The contact force estimator, based on
a recurrent neural network, is capable of estimating the tip
force of a tendon-driven robot but is not suitable for use
with pneumatic actuation or any systems employing low-
level controllers.

In this study, we present a new and innovative tip force
estimator derived from visual data and machine learning
techniques. This estimator incorporates simple, arbitrarily
placed cameras to capture the intricate deformation pat-
terns the continuum robot exhibits. No additional sensors
or calibration is required for the method, making it easy
to be deployed. The core of our estimator relies on the
strategic use of images gathered from the camera, combined
with the known actuation pressure values of the robot. This
combination serves as the input to a deep neural network,
which subsequently computes the 2D external force exerted
on the robot’s tip.

The subsequent sections of this paper are organized as
follows: In Section II, we delve into the foundational theories
that underpin our force-sensing approach, shedding light on
the fundamental principles that guide our methodology. Sec-
tion III presents the experimental platform, data acquisition
protocol, and deep neural network architecture we employ.
Section IV showcases experimental outcomes, showcasing
our method’s advantages and bottlenecks. Finally, Section V
encapsulates our findings and charts the trajectory for future
research.

II. THEORY

A general soft robot can be parametrized through the
following three spaces [2]:

1) Joint Space (Q ∈ Rnq ): This encompasses the entire
set of feasible actuator states (pressure in the context of
this paper) within the defined design constraints of the
robot.

2) Configuration Space (C ∈ Rnc): The set of all attainable
robot shapes.

3) Task Space (T ∈ R6): The set of reachable end-effector
pose, encompassing both positions and orientations.

Here nq is the number of actuation variables (6, in
this study), and nc denotes the number of configuration
parameters that full defines the shape of the soft robot
(assumed to be unknown). These spaces are parameter-
ized using their respective vectors: the joint space vector

q =
[
q1, q2, . . .

]⊤ ∈ Q, the configuration vector ψ =[
ψ⊤

1 ,ψ
⊤
2 , . . .

]⊤ ∈ C, and the end-effector pose vector
xe =

[
x, y, . . .

]⊤ ∈ T .
The mapping from joint space to configuration space can

be represented as ψ = F (q), while the mapping from
configuration space to task space is represented as xe =
G (ψ). Consequently, the instantaneous direct kinematics
from the configuration space to the twist space (derivative
of end-effector pose) can be expressed as follows:

ẋe = Jxψψ̇ (1)

Similarly, the instantaneous inverse kinematics from the
configuration space to the joint space can be represented as:

q̇ = Jqψψ̇ (2)

where Jxψ and Jqψ denote the mapping Jacobians from con-
figuration space to twist space and joint space, respectively
[25].

For the energy conservation to remain valid, the following
relationship must hold statically [11]:

JT
qψτ + JT

xψWe = ∇E (3)

where τ denotes the actuation forces applied on the robot.
We =

[
FT

t mT
t

]T
represents the external wrench ex-

erted on the tip of the robot, where Ft indicates the force
and me, the moment. ∇E is the gradient of the elastic energy
of the robot, which can be calculated when the stiffness K
and deformation of the robot Sd ∈ Rnc are known [11].

Given the robot deformation Sd and input actuator pres-
sure τ , the tip force applied on the robot can be fully
determined:

F̂t = h (Sd, τ ) (4)

where F̂t stands for the estimated tip force, as illustrated in
Figure 1. In this work, we assume that information about the
robot deformation can be obtained from visual images and
the function h can be approximated using a Convolutional
Neural Network.

III. METHODOLOGY

A. Experimental Setup

The force prediction method introduced in this paper is
implemented and validated using the STIFF-FLOP robot.
The design and fabrication details of the robot is presented
in detail in previous works [26], [27], [28]. The experimen-
tal setup features a two-segment STIFF-FLOP robot. Each
robotic segment has a diameter of 25 mm and an overall
length of 46 mm. To control the robot, an Arduino Due
was used to regulate control voltages to six pressure reg-
ulators, generating pneumatic pressure (0–3 bar) to actuate
the robot [29]. Two Lenovo cameras with a resolution of
1920×1080 were used to capture the deformation of the
soft continuum robot, as shown in Figure 2(a). To meet the
network’s input requirements, the images captured from the
cameras are pre-processed: they are resized to a resolution
of 64×64 pixels and converted to grayscale as shown in
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Fig. 2. Experimental platform and setup illustration. (a) Depiction of the experiment configuration, detailing the positioning of the STIFF-FLOP robot
and the cameras. (b) Images resized to a resolution of 64×64 and converted to grayscale, matching the network input specifications. (c) Illustration of the
robot’s force application method through pulling.

Figure 2(b). A black thread was fixed to the robot’s tip to
apply forces. The robot would receive tip forces in different
configurations by pulling the thread from various directions
with various magnitudes. To obtain the ground truth force at
the robot’s tip without obstructing the cameras’ field of view,
a 6-axis force/torque sensor (IIT-FT17) was rigidly connected
to the robot’s base. This force sensor enables direct and
reliable force measurements (error of ±0.01 N) during the
experiments. The control of the robot and the acquisition of
measurements are done using MATLAB.

B. Data Collection

The pulling of the thread was done manually, and the
overall procedure is illustrated in Figure 2(c). The experiment
commenced with the robot being actuated by the application
of a random pressure state. The force data over a duration
of the first 10 seconds was measured, and its mean value
was subtracted from the sensor data to compensate for
gravitational effects.

After this process, the thread was manually pulled in dif-
ferent directions with varying force magnitudes. During this
procedure, the cameras, and the force sensor continuously
recorded data, capturing the robot’s deformation and the
exerted forces as ground truth. The data was sampled at 2 Hz.
Each pressure setting was subjected to approximately a 60-
second procedure with varying external forces applied. The
training dataset in this study comprised of 60 such sets of
deformation and force data, yielding a total of 6,415 data
points. A separate validation set is also obtained with a
different pressure profile for further tests.

C. Learning Architecture

To learn the mapping from deformation and pressure input
to external forces, a deep neural network was used, as shown
in Figure 3. The inputs to the network are greyscale images
and a supersized actuation pressure matrix, both of size
64×64. The number of input images varied depending on
the number of cameras involved. For the model utilizing
information from both cameras, the input to the network was
a 64x64x3 matrix comprising two images and the pressure
matrix and the model with a single camera, had an input size
of 64x64x2.

The proposed network architecture comprises five con-
volutional layers and three transposed convolutional layers.
Each of these layers is followed by a Rectified Linear Unit
(ReLU) activation function. To prevent overfitting, a dropout
layer is included before the fully-connected layer with a drop
out rate of 0.5. For increased robustness in performance,
the original training dataset was augmented by introducing
Gaussian noise. During each iteration of training, Gaussian
noise, having a mean of 0 and a variance of 0.01, was
added to the training image. This was done to improve
the robustness of the network in real-world scenarios. The
regression output layer produces a three-dimensional force
output; however, our primary interest lies in the first two
forces acting on the XY plane. This network was constructed
and trained using the MATLAB Deep Learning toolbox.
Training sessions utilized a mini-batch size of 516 and
employed the Adam optimizer. The entire training process,
conducted on a GeForce RTX 3060 GPU, took approximately
12 minutes.
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Fig. 3. The deep neural network architecture used in this work. The inputs to the network are images and a supersized actuation pressure matrix, both
of size 64×64. The network outputs the force applied at the tip.
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Fig. 4. Predicted force vs true force on the test set in the (a) X direction
(b) Y direction. The data point colour represents the prediction error.

IV. RESULTS

In this section, we present the performance of our vision-
based force estimation model and evaluate its robustness to
varying conditions. All the results shown are for the 2 camera
system, unless specified otherwise.

A. Validation Results

To evaluate the accuracy of our model, the dataset was
partitioned into a training set (90% of the data) and a testing

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50 60 70 80 90 100

Samples (Measured @2Hz)

-0.2

0

0.2

0.4

0.6

0.8

1

F
o

rc
e
 (

N
)

F
o

rc
e
 (

N
)

0

0.01

0.02

0.03

0.04

0.05

0.06

M
e

a
n
 S

q
u

a
re

d
 E

rr
o

r 
(N

2
)

Model-1

(Testing) 

Model-2

(Testing) 
Model-1

(Validation) 

Model-2

(Validation) 

True force(N)

P
re

d
ic

ti
o

n
 F

o
rc

e
 (

N
)

-1 -0.5 0 0.5

-1

-0.5

0

0.5

X direction

-0.5 0 0.5 1

-0.5

0

0.5

1
Y direction

True force(N)

P
re

d
ic

ti
o

n
 F

o
rc

e
 (

N
)

-1 -0.5 0 0.5

-1

-0.5

0

0.5

x-direction

0.05

0.1

0.15

0.2

0.25

0.3

-0.5 0 0.5 1

-0.5

0

0.5

1 y-direction

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
re

d
ic

ti
o

n
 F

o
rc

e 
(N

)
P

re
d

ic
ti

o
n

 F
o
rc

e 
(N

)

True force(N)

True force(N)

A
b

so
lu

te
 e

rr
o

r 
(N

)

(a)

(b)

A
b

so
lu

te
 e

rr
o

r 
(N

)

x-direction
y-direction
x-direction
y-direction

X-direction

Y-direction

Prediction without pressure

True Force
Prediction with pressure
Prediction without pressure

True Force
Prediction with pressure
Prediction without pressure

True Force
Prediction with pressure

0

0.01

0.02

0.03

0.04

0.05

M
e

a
n
 S

q
u

a
re

d
 E

rr
o

r 
(N

2
)

Model-1

(Testing) 

Model-2

(Testing) 

Model-1

(Validation) 

Model-2

(Validation) 

x-direction
y-direction
x-direction
y-direction

Fig. 5. Comparison of network predictions, with and without pressure
information.

subset (the remaining 10%). Figure 4 presents the network’s
prediction accuracy on the test data. It can be observed that
the network exhibits the ability to estimate forces in both
directions equally well, however, the performance deterio-
rates at extrema. We hypothesize that this is because of low
representation in the training data, which can be rectified
with more data at higher limits. The prediction results in
the Z-direction is not presented here due to much smaller
variations.

B. Analysis on Network Architecture

To analyse the relevance of pressure information for force
prediction, we perform an experiment where the pressure
matrix was removed from the network input. The subsequent
network was trained using only the image data. The predic-
tion performance is shown in Figure 5, revealing that the
model without pressure information can still roughly estimate



TABLE I
PERFORMANCE IN PREDICTING FORCES APPLIED AT EITHER THE TIP OR

THE BODY.

Mean absolute error and standard deviation of the predicted force (N )
Test Error on X direction Error on Y direction

Tip Force (1-Camera) 0.0986 (0.11) 0.1911 (0.17)
Tip Force (2-Camera) 0.0593 (0.06) 0.1423 (0.14)

Body Force (2-Camera) 0.1979 (0.22) 0.2611 (0.31)

force patterns, but displays constant biases. When deprived
of pressure information, the model must estimate the robot’s
initial actuation state purely from image data. Although it can
obtain some information about the initial deformation state,
it cannot capture it completely, leading to this observed bias.

To analyse the observability of the camera system, the net-
work was trained using only one camera’s images (camera-1
in Figure 2). Figure 6 shows the performance difference be-
tween using both cameras and a single camera. As expected,
the performance in the Y direction is better when using
images from both cameras, whereas the performance in the X
direction is not significantly affected. This improvement can
be attributed to the fact that camera-1 is in the Y direction,
making it difficult to fully observe deformations in the Y
direction. Hence, full observability of the system state is
not necessary for force estimation and as the sensor quality
improves the prediction accuracy increases. The presented
model using visible spectrum images for force predictions,
but these can also be replaced with other sensor sources that
provide similar information. These can be from strain sensor
data, X-ray imaging or magnetic sensors [30], [31].

C. Model Robustness

Thus far, the force estimation model has been evaluated
under controlled conditions that closely resemble the train-
ing environment. Here, we evaluate the robustness of the
predictions in varying conditions. As previously described,
the training data was collected with force applied to the tip
of the robot using a fixed thread. For our first study, we
apply random forces to various locations on the robot using
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Fig. 6. Performance assessment of models based on camera input sources.
Model-1 utilizes images only from camera-1 (See Figure 2), while Model-2
uses images from both cameras.
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Fig. 7. Figure illustrating the model’s performance as the image input is
shifted. Images were translated by a certain number of pixels in both the X
and Y directions.

TABLE II
FORCE PREDICTION ACCURACY ON DEFORMABLE OBJECTS

Mean absolute error and standard deviation (N )
Material X direction Y direction

Rod 0.0593 (0.06) 0.1423 (0.14)
Sponge 0.0949 (0.12) 0.1137 (0.15)

Silicone rubber 1 0.0889 (0.10) 0.0887 (0.10)
Silicone rubber 2 0.1629 (0.20) 0.0956 (0.12)

a metal rod. The prediction force’s mean absolute error and
standard deviation is presented in Table I, comparing the
performance of predicting forces applied at the tip versus
forces applied elsewhere on the robot. The results reveal
that predictions are reliable even when the visual scene is
varied. However, the deformation modes obtained for point
loads at different locations are not the same, leading to higher
prediction errors. This could be reduced by collecting more
varied force application data or by predicting moments rather
than forces, which are distance independent.

Next, we study the effects of camera movement, a likely
scenario in real-world applications. This is tested by virtually
translating the images in both the X and Y directions. The
resulting performance and variance of the prediction error are
shown in Figure 7. The results show a sharp increase in the
prediction error as the image is translated, with a slight drop
observed after the images were moved more than 6 pixels.
However, the variance of the error continued to increase,
signifying that camera movement can significantly impact
the accuracy of the network. Adding max pooling layers
to the CNN architecture, further data augmentation (include
random translations of the input data), and/or more advanced
architectures like Spatial Transformer Networks (STNs) can
be used to increase shift invariance [32].

Finally, we evaluate the force prediction accuracy in non-
rigid surfaces to simulate real-world conditions. For compari-
son purposes, we use a metal rod and materials with different
stiffness levels (See Figure 8). The external forces were
applied in random directions and patterns, while ensuring
that the force remained below the 0.5 N range.

The average prediction performance is shown in Table II
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Fig. 8. Presentation of the force application setup, highlighting materials that could obstruct camera views and impact prediction performance. Forces
were applied using various materials, including a metal rod, sponge, and silicone rubbers with varied stiffness. The top row illustrates force estimations in
the X direction, while the bottom row shows performance in the Y direction.

and an illustration of the prediction model is shown in
the lower part of Figure 8. The results indicate that the
accuracy of force prediction declines as the external contact
becomes softer. This decrease in accuracy may stem from
two potential factors: first, the network’s lack of training on
visually novel objects; second, the broader force distribution
from the soft object, leading to varied deformation in the soft
robot.

V. CONCLUSION

This study presents a vision-based tip force estimation
technique for soft continuum robots using deep learning that
provides high accuracy without compromising the robot’s
structure. We tested this method on a two-segment STIFF-
FLOP robot, utilizing two camera images to capture the
robot’s deformation. Our findings indicate that for optimal
force estimation accuracy, the robot’s actuation pressure is
essential. We also enhanced the network’s capability to func-
tion effectively even in the presence of obstacles within the
images by adding visual noise while training, and validated
the results using real-world experiments. Our vision-based
force estimation model demonstrated a sensing precision of
0.05 N in the XY plane during testing, with a data collection
and training time of only 70 minutes. Longer and varied
training data should improve model performances.

While our experiments were conducted solely on the
STIFF-FLOP robot, in theory, this method applies to var-
ious soft robots that exhibit deformation under external
force. Investigations on other types of soft robots may be

undertaken in future studies. Currently, the technique can
only estimate the force at the robot’s tip. Estimating forces
along the robot’s length is also theoretically possible but
requires more experimental studies to be validated. Using
other sources of deformation information like X-ray imaging
or magnetic sensing could also be a possible future direction
to be investigated.
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ranga, H. Liu, J. Housden, K. Althoefer, and K. Rhode, “Multi-axis
force/torque sensor based on simply-supported beam and optoelectron-
ics,” Sensors, vol. 16, no. 11, p. 1936, 2016.

[20] R. L. Truby, C. Della Santina, and D. Rus, “Distributed proprioception
of 3d configuration in soft, sensorized robots via deep learning,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3299–3306, 2020.

[21] D. Haraguchi, T. Kanno, K. Tadano, and K. Kawashima, “A pneumat-
ically driven surgical manipulator with a flexible distal joint capable
of force sensing,” IEEE/ASME Transactions on Mechatronics, vol. 20,
no. 6, pp. 2950–2961, 2015.

[22] M. Luo, Y. Pan, E. H. Skorina, W. Tao, F. Chen, S. Ozel, and C. D.
Onal, “Slithering towards autonomy: a self-contained soft robotic
snake platform with integrated curvature sensing,” Bioinspiration &
biomimetics, vol. 10, no. 5, p. 055001, 2015.

[23] F. Feng, W. Hong, and L. Xie, “A learning-based tip contact force es-
timation method for tendon-driven continuum manipulator,” Scientific
Reports, vol. 11, no. 1, p. 17482, 2021.

[24] N. Haouchine, W. Kuang, S. Cotin, and M. Yip, “Vision-based
force feedback estimation for robot-assisted surgery using instrument-
constrained biomechanical three-dimensional maps,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 2160–2165, 2018.

[25] K. Xu and N. Simaan, “Intrinsic wrench estimation and its perfor-
mance index for multisegment continuum robots,” IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 555–561, 2010.
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