
Reduced finite element modelling and closed-loop control of

pneumatic-driven soft continuum robots

Paul Chaillou1∗, Jialei Shi2∗, Alexandre Kruszewski1, Isabelle Fournier3,

Helge A. Wurdemann2, Christian Duriez1

AbstractÐ The introduction of soft robots has led to the
development of inherently safe and flexible interventional tools
for medical applications, when compared to their traditionally
rigid counterparts. In particular, robot-assisted surgery is one
of the medical applications that benefits from the inherent
properties of soft instruments. However, robust control and
reliable manipulation of soft tools remain challenging. In this
paper, we present a new method based on reduced finite element
method model and closed-loop inverse kinematics control for
a fiber-reinforced soft robot. The highly flexible, pneumatically
driven soft robot has three fully fiber-reinforced chamber pairs.
The outer diameter is 11.5 mm. An inner working channel of
4.5 mm provides a free lumen for in-vivo cancer imaging tools
during minimally invasive interventions. Here, the manipulator
is designed in order to retrieve a tissue biopsy which can then be
investigated for cancerous tissue. Simulation and experimental
results are compared to validate the model and control methods,
using one-module and two-module robots. The results show
a real-time control is achievable using the reduced model.
Combing the closed-loop control, the median position tracking
errors are generally less than 2 mm.

I. INTRODUCTION

For a long time, one way of ensuring positioning accuracy

in robotics included the increase of stiffness in an articulated

robot structure. But the metrics used, especially absolute po-

sitioning in space, were derived from use cases in industrial

environments. In these settings, traditional robotic arms were

made of rigid materials. For surgical robotics applications,

the environment is fundamental different and the metrics

have naturally evolved, giving a particularly interesting use

case for soft robots. The need for performance, however,

remains, which is sometimes challenging to obtain.

In this paper, we focus on a use case involving a soft

robot for an automatic scanning tool during a laparoscopic

procedure. To guarantee a precise scanning procedure, the

robot requires a good relative positioning accuracy of its

tip with respect to an organ surface. At the same time, this

interventional application inside the human body demands an

inherently safe robotic tool, which advocates for the usage
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Fig. 1. The physical (top) and modelled (bottom) (a) one-module and (b)
two-module soft manipulators in SOFA.

of inherently soft materials. The challenge is to increase the

relative positioning accuracy for a robotic manipulator made

of soft material. Hence, the contribution of this paper lies

in a new method based on reduced finite element method

(FEM) model and its closed-loop inverse kinematics control,

adapted for a fiber-reinforced soft robot for laparoscopy.

A. Background

Compared to rigid-link robots, soft continuum robots have

a variety of design morphology and actuation principles [1].

The generalisation of a kinematic or dynamic modelling

framework for soft robots is challenging [2]. One prominent

modelling approach is the constant curvature (CC) model.

The curvature along the back bone of a soft manipulator

is assumed to be constant. Hence, the kinematic shape can

be described by the curve length, curvature and out-of-plane

angle [3]. The CC model can be extended to a piece-wise

constant curvature (PCC) model, where a continuum robot

is discretised into sections. Each section has a constant

curvature [4]. In such way, a robot can have sections of

different curvatures [5]. Based on the (P)CC assumptions, the

dynamics model can be established, e.g., considering a robot

is composed of virtual prismatic or revolute joints [6]. In ad-

dition, general variable curvature models have been explored,

for instance, the Cosserat rod models [7], [8], the piece-

wise constant strain model [9], the beam mechanics [10] or

FEM models [11]. As some approaches are computationally

expensive, the shape interpolation [12] technique or reduced-

order models have been explored [13] to improve efficiency.

Once the forward kinematics or dynamics models are



determined, the model-based inverse control can be imple-

mented. Based on the (P)CC assumption, analytical inverse

approaches can be calculated, for instance, via the closed

form [14] or the differential Jacobian [15]. Della Santina

et. al described dynamic impedance control when a soft

robot is in physical interaction with the environment [16]. A

real-time simulation and control method of soft robots with

self-collisions is proposed in [17], based on a reduced-order

FEM and implemented using SOFA [18]. Alternatively, the

optimisation-based method can be used, e.g., constructing

the initial conditions by including the actuation variables,

the shooting method can solve the inverse control by min-

imising the errors of the boundary based on the Cosserat

rod model [19]. Apart from model-based inverse control,

learning approaches can be advantageous to deal with the

un-modelled uncertainties and external disturbances [20].

Those modelling and control advances have facilitated the

development of soft robots. In particular, the medical sector

has emphasised increasing levels of autonomy to achieve safe

and efficient robot-assisted surgeries [21]. In this case, robust

and reliable control and manipulation of medical soft robots

are of paramount importance.

B. Contribution and outline

In this paper, we first present the design of a highly

flexible, pneumatically driven soft continuum robot, which is

a miniaturised version of the STIFF-FLOP design [14]. The

robot has three fully fiber-reinforced chamber pairs. Made

of sewing thread, this fiber avoids the radial expansion. The

outer diameter is 11.5 mm. An inner working channel of 4.5

mm provides a free lumen for in-vivo cancer imaging tools

during minimally invasive interventions in cancer surgery.

Here, a device is introduced through the inner free channel

of the manipulator in order to retrieve a digital biopsy

thanks to the molecular analysis of tumor and peri-tumoral

tissues using a mass spectrometry based technology, the

SpiderMass [22]. We then present the formulation of a

reduced FEM model with the open-loop and closed-loop

control, based on the hypothesis of the inextensibility of the

fiber-reinforcement layer (see Fig. 1). The challenge is to

use our new movement parameterization model to do real-

time control. A comparison between the computational and

experimental results validates our approach.

CROSS-SECTIONAL DIMENSION OF THE SOFT ROBOT

ValueSymbol Description

Diameter of the soft robot.

Unit

[mm]11.5

Diameter of the central lumen. 4.5 [mm]

Inner diameter of the chambers. 1.5 [mm]

Diameter of the chamber position. 8.0 [mm]cpD
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Fig. 2. Overview of dimensions of the cross-sectional geometry. Two
adjacent chambers are actuated as one pair, which have been marked in the
same colour. One segment has an outer diameter of 11.5 mm, the actuation
chambers have an inner diameter of 1.5mm. The free inner lumen has an
inner diameter of 4.5 mm. The length of one module is 55 mm.

The remainder of the paper is organised as follows:

Section II discusses the medical background for in-vivo

cancer imaging and presents the design of the medical

soft instruments. Section III then details the reduced FEM

model with the open-loop and closed-loop inverse kinematics

control. Section IV then reports the validation results from

the simulation and experiments, using one-module and two-

module robotic manipulators. Section V presents the discus-

sions, and the conclusions are presented in Section VI.

II. REQUIREMENTS FOR IN-VIVO CANCER

INTRAOPERATIVE IMAGING IN CANCER SURGERY USING

SPIDERMASS TECHNOLOGY AND ROBOT DESIGN

A. Context : In-vivo cancer imaging

Surgery is essential and remains the first frontline treat-

ment of solid cancers. In order to determine the exact exten-

sion of the cancer, to preserve non-cancerous tissue at most,

robotic imaging may give useful informations the surgeon.

Our envisioned technology is based on the mini-invasive

real-time mass spectrometry (SpiderMass Technology) [23],

within Minimally Invasive Surgery (MIS) context. Compared

to traditional in-vivo imaging (CTscan, IRM) and margin

verification systems (Histology and immunohistochemical

analysis), which are time-consuming and limited, the Spi-

derMass Technology can analyse the cells in real-time and

distinguish the different cell phenotypes therefore making

possible to discriminate types, subtypes and grades of solid

tumors [24]. It uses an optical fiber to bring the laser beam to

the surface and a transfer line to bring the aerosol produced

by the laser ablation up to the mass spectrometer for further

analysis. Combining this real-time imaging technology with

soft robots might result in a significant reduction in operation

time and impact on the patient’s health. Soft robots, due to

their high dexterity and intrinsic safety, are very adapted to

sensitive and narrow context, such as MIS. To product quick

and accurate images, the point per point scanning have to

be automatic, and soft properties may gives more security

guarantee compared to rigid robot. This medical context

leads to our design and to the constrains we want to satisfy.

A hollow robot is also needed to be able to pass and protect

the optic fiber and the suction tube of the SpiderMass system.

TABLE I

LIST OF MEDICAL TOOLS INSERTED THROUGH THE INNER WORKING

CHANNEL OF THE SOFT ROBOT FOR in-vivo CANCER IMAGING.

Components Diameter [mm] Descriptions

Vacuum tube 1.5 mm Retrieving the biopsy samples.

Actuation pipes∗ 1.0 mm Three actuation pipes.

Depth sensor 1.0 mm Checking the focal distance
the laser ablation (three wires).

Optical fiber 0.7 mm Ablating the organs.

Position sensor 1.0 mm For the closed-loop control (one wire).

* The actuation pipes are passed through the preserved three slots parallel
to the central working channel (see Fig. 2).



B. Design of one soft robotic module

Based on the introduced cancer imaging application, a

pneumatically driven soft module is presented (see Fig. 1(a)),

with an outer diameter of 11.5 mm (less than the diameter of

the commercially available trocar port which has a diameter

of 12 mm). An inner lumen of a 4.5 mm diameter is embed-

ded. The length of one robot module is 55 mm. Connecting

two robot modules in series results in a two-module robot

which is highly flexible and dexterous (see Fig. 1(b)). The

robot body is made of a low shore hardness silicone (Ecofex

00-50, SmoothOn). The robot has six fully fiber-reinforced

chambers distributed evenly [25]. Two adjacent chambers

are internally connected via a 1 mm silicone pipes and

actuated as one pair. The robot fabrication can be referred

to [14], [26]. To keep the inner lumen free for instrumental

components (see Table. I), e.g., the optic fiber and sensor

wires, three 1.5 mm diameter slots are preserved along the

lumen to place the actuation pipes of a 1 mm diameter (see

Fig. 2). For closed loop position control, the inner lumen

offers sufficient space for an additional positioning sensor

and depth sensor, so that the end effector is put at the focal

distance of the surface to be analysed. Details of the cross-

sectional geometries are shown in Fig. 2.

III. MODELLING AND CLOSED-LOOP CONTROL METHOD

The modelling and associated control methods require a

trade-off between the accuracy and computational time. The

quality of the control is impacted by the accuracy of the

model, but in a feedback control scheme, the computation

time is also of paramount importance. A high-frequency

simulation will be beneficial for choosing control coefficients

leading to a robust system, that is able to effectively resist

perturbations and returns minimal modelling errors. In order

to be able to compute real-time positioning, we derive a

reduced FEM model to compute the elastic internal forces in

a reduced beam space. In practice, we compute all internal

forces and the impact of the actuation in the FEM space, but

we solve the equilibrium of forces in this reduced space.

A. Modelling of the reduced model

1) Reduced beam kinematics: In beam theory, the motion

of points follows certain assumptions. In particular, the cross-

sections are assumed to be rigid, so the motion of any point

in the beam can be parameterised by the central axis motions.

This assumption of a rigid section is motivated by the use of

fiber-reinforced chambers in the design. We use this beam

kinematics to reduce the size of the motion coordinates of

the model. To model forces on the soft robot module, we use

a 3D FEM model, meshed with nodes. Then, the position of

any nodes of the FEM can be deduced from the degrees of

freedom (DOFs) of the beam. This yields in (1).

x = A(q) (1)

where x denotes position of all nodes (denoted by pn) of the

FEM mesh, and q denotes position of the beam’s DOFs (see

Fig. 3). A(q) creates a static link between the FEM nodes

and beam, i.e., the position of the FEM points is static in

Fig. 3. Scheme of the link between the FEM nodes pn and the beam DOF
positions qk .

the beam frame. For each point of the FEM, we associate a

barycentric reference Rbary(pn, t) by interpolation

Rbary(pn, t) = slerp(qk(t), qk+1(t), l(pn)) (2)

where qk is the position of the kth DOF of the beam,

and slerp() is the interpolation function for position and

orientation between two nodes of the beam. Details on the

interpolation method are described in [27]. l(pn) is the

function that associates the pn nodes to the position of

the barycentric reference between two beam nodes. In the

barycentric reference associated to each point, the position

of the node pn of the FEM mesh is static and described by

pn(t)Rbary(pn,t) = pn(0)Rbary(pn,0) (3)

This models the fiber around the pneumatic cavities. As

the distance between the FEM point and the beam node is

fixed, the FEM mesh does not expand laterally due to fiber

constraints. Expressing pn(t) in the global frame yields

Rbary(pn, t)
−1pn(t)Abs = Rbary(pn, 0)

−1pn(0)Abs (4)

The subscript Abs refers to the absolute position in the global

frame. As such,

pn(t)Abs = Rbary(pn, t)Rbary(pn, 0)
−1pn(0)Abs (5)

In practice, this link is made in the SOFA framework using

BeamAdapter Plugin [28]. For a small displacement or speed,

the derivatives of node position x from (1) are described by

dx =
∂A

∂q
dq and

dx

dt
=

∂A

∂q

dq

dt
(6)

2) Forces projection : To model the structural non-linear

elasticity and the pneumatic actuation, we compute the force

balance on a volume 3D FEM model. To bring the non-linear

forces f(x) of the FEM mesh to the DOFs of the beam, we

use the principle of virtual works which is independent from

the references. The virtual displacement dq (or dx in the

FEM space) makes the forces to work, this yields

dW = dxT f(x) = dqT τ(q) (7)

with τ(q) as the internal forces, expressed in this reduced

space. The Jacobian matrix J of the function A(q) is



introduced to achieve the coordinate transformation by

J =
∂A

∂q
so with (6), it is obtained : dx = Jdq (8)

By using the Jacobian matrix from (8), the forces in the FEM

space expressed in the beam space are

JT f(x) = τ(q) (9)

In practice, a linearisation is computed at each step to

compute the equilibrium.

JT f(x+ dx) ≈ JT (f(x) +
∂f

∂x
dx)

≈ JT f(A(q)) + JTKJdq

(10)

K = ∂f
∂x

is the non-linear stiffness of the structure computed

by FEM. This forces equilibrium is solved at each time step

in the SOFA simulation. For the dynamics, we may calculate

the same kind of projection. However, the implicit integration

scheme is dampening the dynamics at this frame rate.

B. Comparison with the full FEM model

To validate and to measure the performance gain, the

reduced model is compared with a classical FEM model

without any beam motion reduction. In this simulation, we

model the impact of the reinforcement fiber using stiff

springs. These springs are placed around the cavity in the

FEM, to reproduce the effect of real fibers constraining lat-

eral deformation of the module (i.e., preventing ballooning).

1) Elastic parameters: As the impact of the reinforce-

ment fiber is directly modelled in the classical FEM, the

equivalent Young’s modulus of Ecofex 00-50 is 100 kPa. For

the reduced model, the force projection introduces artificial

stiffness in the simulation. This artificial rigidity may be due

to the beam assumption, i.e., the cross-section is rigid. So, the

shrinking effect of the cross-section is constrained. Hence,

the Young’s modulus in the reduced model is 83 kPa, derived

from the gradient descent optimisation.

2) Accuracy comparison: To investigate the accuracy

between the two modelling techniques, three tests were

conducted. 0 to 100 kPa were applied to one, two and three

chamber. The positioning comparison results are displayed in

Fig. 4. Globally, the positioning properties of the two models

are very similar. We may see that for very large deformations,

the reduced model looks to introduce artificial rigidity, that

may be due to the static cross-section assumption of the robot

in the reduced model.

Fig. 4. Simulation comparisons between the classical and reduced FEM.

TABLE II

SUMMARY OF PERFORMANCE OF THE FULL & REDUCED FEM MODEL.

1 module 2 modules

Time [s] FPS* Time [s] FPS*

Full FEM 179.69 (0.83) 5.56 (0.02) 607.01 (0.90) 1.64 (0.01)

Reduced model 38.32 (2.28) 26.16 (1.48) 71.76 (0.71) 13.93 (0.14)

All the value are the mean value for 4 experiments, described with their
standard deviation. (*FPS = Frame Per Second)

3) Computational performance comparison: To under-

stand the computational expense, we run simulations in an

open-loop control scenario, that drew a 40 mm diameter

circle, as described in Experiment 2 (see Section IV-B). The

simulations ran for 1000 iterations, each with a 0.1s time

step. Each experiment ran 4 times. Table II summarises the

mean time and FPS with the associated standard deviations.

The computation of the reduced model is faster than the full

FEM model. For the simulation of one module it is about

4 times faster. For the other simulations, it is about 8 times

faster. Indeed, the complexity of the computation is different:

• for the full FEM model, most of the computation is

dedicated to the factorization of the sparse FEM matrix

system which has a theoretical complexity O(n3).
• for the reduced model, most computational time is spent

on the projection of matrix K in the reduced space

(JTKJ shown in (10)) which has a linear complexity.

The time to solve the equilibrium by factorization of the

system is quick due to the fact that the size is small.

C. Inverse kinematics control

For the inverse kinematics control, we compute the in-

verse problem using an optimisation-based method [18],

based on the reduced FEM model, using the available

SoftRobot.Inverse Plugin in SOFA. In this way, the inverse

control is open-loop because no feedback from the hardware

(so yu = yd) is obtained. To accommodate un-modelled

uncertainties, a closed-loop control is implemented using a

proportional±integral (PI) controller. The desired position yd
is compensated by the current measured error ye, so the
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Fig. 5. The open-loop and closed-loop control scheme. yd is the desired
position, yu is the input position to the inverse controller, and ym is the
measured position. For open-loop control, yu equals yd without feedback
correction. While yu is compensated by the feedback position using a PI
controller in the closed-loop control.



demand yu in the closed-loop control equals

yu = yd + kpye + ki

∫ t

0

yedt (11)

The open-loop and closed loop control schemes are sum-

marised in Fig. 5. Please note that kp and ki are not scalars,

instead, they have a diagonal form so the controller can use

different gains to correct the position errors along three axes.

In practice, the PI parameters are determined empirically.

IV. COMPUTATIONAL SIMULATION AND EXPERIMENTAL

VALIDATION RESULTS

A. Experimental setup

The chamber pressure is regulated and monitored by

proportional pressure regulators (Camozzi K8P). Pressurised

air is supplied to the regulators by a compressor (HYUNDAI

Model HY5508). The pressure regulators are controlled by

an Arudino Due. The board sends PWMs (0∼ 100%) which

are proportionally converted to (0∼ 10 V) analogue control

voltages. An electromagnetic tracking system (NDI Aurora)

monitors the tip (and the middle position) of the (two-

module) robot using trackers. The positions are imported to

SOFA as feedback information for closed-loop control. A PC

runs SOFA including the simulation, inverse kinematics and

closed-loop controller. SOFA sends out the real-time desired

pressure to the Arduino Due board by serial communication.

B. Experimental protocols

Three sets of experiments were conducted to validate the

reduced FEM model and the closed-loop and open-loop

control methods. The desired position, measured position

(from NDI trackers), simulated positions (from SOFA) and

the chamber pressure were recorded. The fiber and vacuum

pipes for Mass spectrometry were inserted to the central

lumen during the experiments. The simulation steps in SOFA

were set to 0.1 s.

Experiment 1 - Point-to-point control (one-module robot):

A point table was implemented with desired points sent

out one by one (see Fig. 6). The desired height is 55
mm and 60 mm on the right-hand and the left-hand x-

y plane, respectively. To simulate a static condition, the

desired positions were updated every 20 calculation steps.

Both open-loop and closed-loop control were investigated.

Each test repeated the point table 10 times.

Experiment 2 - Spatial trajectory tracking control (one-

module robot): Four different trajectories were used to

validate the open-loop and closed-loop control. Two circular

trajectories with a diameter of 30 mm (C30) and 40 mm

(C40), and two rectangular trajectories with a side length of

20 mm (R20) and 30 mm (R30), were chosen. The desired

positions in the z-axis were kept as 55 mm. Each trajectory

was repetitively tracked for 10 times.

Experiment 3 - Spatial trajectory tracking control (two-

module robot): Two different trajectories were used to vali-

date the modelling and control for a two-module robot. The

trajectories included a circle shape with a diameter of 80

mm, and a rectangle shape with a side length of 60 mm. The

desired positions in the z-axis were kept as 110 mm. Apart

from the monitored tip position, an additional NDI tracker

was embedded in the middle of the robot (see Fig. 9(a)). The

robot’s positions were tracked 10 times for each trajectory.

C. Simulation and experimental results

Results for Experiment 1: Fig. 6(a) visualises the results

from the simulated positions (coloured in green), the desired

positions (coloured in red), the measured positions from the

open-loop control (coloured in magenta) and the measured

positions from the closed-loop control (coloured in blue).

From this figure, it can be seen that the errors from the open-

loop controller become larger when heights of the desired

points are 60 mm. Meanwhile, the green points show that the

model can track the desired positions in the SOFA simulation

environment. In general, the experimental results from the

closed-loop control have the smallest errors.

The open-loop and closed-loop control are summarised

in Fig. 6(b) and Fig. 6(c), respectively. The overall mean

errors are 0.9 mm and 3.4 mm for the open-loop and closed-

loop control. Fig. 6(b) shows that the maximum error of

the open-loop control is 10.2 mm, which occurs when the

robot approaches the furthest points, i.e., [−10, 10, 60] mm.

Compared to the results from the left-hand x-y plane (x ≤

0 mm, z = 60 mm), the results from the right-hand x-y

plane (x ≥ 0 mm, z = 55 mm) have overall smaller errors,

with the maximum mean error of 2.9 mm at [10, 10, 55] mm.

Fig. 6(c) reports the error details of the closed-loop control.

By contrast, the errors are more consistent at different points,

with an overall maximum error of 1.4 mm.

Results for Experiment 2: Fig. 7 reports and compares

the recorded trajectory when the robot finished the first-

time tracking. In general, compared to Figs. 7(b) and 7(c),
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Fig. 6. Results for Experiment 1: (a) Comparison between the measured tip
position, the simulated position and the desired position for the open-loop
and closed-loop controller. The summarised mean absolute tip errors with
respect to different desired points are shown in (b) and (c).
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Fig. 7. Results for Experiment 2: Trajectory tracking performance of open-loop and the closed-loop control. (a) Measurement of the robot’s trajectory.
Results for (b) tracking a rectangle, with a side length of 20 mm, (c) tracking a rectangle, with a side length of 30 mm, (d) tracking a circle, with a
diameter of 30 mm, and (e) tracking a circle, with a diameter of 40 mm.

Figs. 7(d) and 7(e) show the errors from the open-loop

control become larger when tracking larger trajectories.

Conversely, the closed-loop controller results in the robot

consistently and stably following the desired trajectories.

Furthermore, the summarised errors from the open-loop and

closed-loop control are reported in Fig. 8 using box plots. In
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Fig. 8. Results for Experiment 2: Summarised tracking errors using box
plots. Results for rectangles are shown in (a) and (b), with a width of 30mm
and 40mm. The results for circles are shown in (c) and (d), with a radius of
15mm and 20mm. The central red marks, the bottom and top edges of the
box indicate the median, the 25th and 75th percentiles, respectively. The
outliers are plotted using the ‘+’ symbol.

particular, the median errors from the closed-loop control are

0.8 mm, 1.2 mm, 0.7 mm, and 0.8 mm for R20, R30, C30

and C40, respectively. By contrast, the median errors from

the open-loop control are 4.5 mm, 2.4 mm, 3.0 mm, and

4.8 mm for R20, R30, C30 and C40, respectively. Moreover,

the open-loop control has smaller errors when the tracking

shapes have smaller dimensions, e.g., shown in Figs. 8(a)

and (c). The maximum errors increase when the trajectories

become larger (see Figs. 8(b) and (d)).

Results for Experiment 3: Fig. 9 reports trajectory tracking

results for a two-module robot. The inverse kinematics

controller shows effective and reliable performance as the

circle and rectangle shapes can be tracked (see Figs. 9(b)

and (c)), while the open-loop and closed-loop results have

different accuracies. Similar to Fig. 7(c), Fig. 9(c) also shows

that the error of the open-loop control becomes larger when

the robot approaches any of the four corners of the rectangle.

Furthermore, as shown in Fig. 10, the median closed-loop tip

errors are 1.6 mm and 1.9 mm for the circular and rectangular

shapes, respectively. By comparison, the median tip errors

using the open-loop control are 6.9 mm and 7.9 mm for the

circular and rectangular shapes, respectively.

V. DISCUSSIONS

A. Discussions of the model and open-loop control

In Experiment 1, the results show that the robot can

successfully follow the point-to-point command for both

open-loop and closed-loop control. The accuracy of the

open-loop control decreases when the robot travels further

distances. Similar results are observed in Experiments 2

and 3, the open-loop control accuracy deteriorates under
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larger desired trajectories, e.g., the non-outlier maximum

errors increase from 5.5 mm (for C30) to 8.7 mm (for C40)

for the one-module robot. This difference might result from

the modelling accuracy as the open-loop control directly

solves the inverse kinematics based on the established model.

In this work, we assumed a linear material model with a

constant Young’s Modulus. This assumption becomes less

effective when the robot undergoes larger deformation, as

the silicone material shows a nonlinear strain-stress relation-

ship [29]. As such, exploring nonlinear hyper-elastic models

might improve the modelling accuracy and further mitigate

the errors from the open-loop control. For instance, it was

reported that the Neo-Hookean model could be used to model

the fiber-reinforced bending actuator when the elongation is

less than 50% [30]. Furthermore, the cross-sectional area

will shrink when the robot elongates, in particular, when the

material is incompressible, as reported in [31]. Considering

this cross-sectional deformation in the reduced model could

also improve the modelling accuracy.

B. Discussions of the closed-loop control

Experiments 1-3 show that the closed-loop control can

reliably improve accuracy of the point-to-point and trajectory

tracking performance. By introducing position feedback,

the closed-loop control first can mitigate the inaccuracy of

the material model discussed in Section V-A. It can then

alleviate the un-modelled uncertainties, e.g., the potential
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Fig. 10. Results for Experiment 3: Summarised tracking errors for (a) a
circle with a diameter of 80 mm, (b) rectangle with a side length of 60 mm.

inconsistencies of the robot fabrication or errors for the

pressure control. As shown in Fig. 11, the comparison of

the actuation pressure for the open-loop and closed-loop

control of the one-module robot for C40 circle tracking are

reported. The dotted pressure curves are derived based on

the model-based inverse kinematics, and the solid curves

are the pressure values from the closed-loop control. The

differences between two curves are the efforts that the closed-

loop controller takes to correct the uncertainties. Although

the closed-loop control can improve the control accuracy, it is

worth mentioning that the position sensing needs additional

sensors. Adding position sensors might be challenging for

the targeted medical application. Improving the modelling

accuracy can be helpful. In addition, exploring proprioceptive

sensing is meaningful [32] for achieving a self-contained

closed-loop control. Moreover, we focused on the quasi-static

scenario in this work. However, dynamic behaviours were

also observed during the point-to-point tests, indicating the

consideration of a dynamic model that might improve the

controlled manoeuvrability of the robot.

VI. CONCLUSIONS

Aiming at applying soft robots for cancer imaging in

minimally invasive interventions, we first designed a flexible

modular soft instrument prototype, with an outer diameter of
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for the one-module robot following a 40 mm-diameter circular trajectory.



11.5 mm. The robot can be inserted through a commercially

available 12 mm trocar port. The robot is equipped with

an inner free lumen of a 4.5 mm diameter, which can

accommodate the optic fiber and vacuum pipes for retrieving

biopsies. In addition, two modules have been connected to

achieve higher flexibility (see Fig. 1). We applied the reduced

FEM technique to model and control both the one-module

and two-module soft robots using SOFA. The simulation

demonstrates performances of the reduced FEM is at least

4 times faster than a classical FEM model. The simulation

and experiments were both conducted to further validate the

reduced FEM model and inverse control. To compensate un-

modelled uncertainties in the open-loop control and improve

the control accuracy, we introduced the closed-loop control

using position feedback.

In future work, we will first aim to improve the model

accuracy which can further produce better open-loop control

results, e.g., by introducing nonlinear hyper-elastic material

models and considering the dynamics behaviour. In addition,

we will integrate the soft instrument prototypes to the phan-

tom and the SpiderMass device to develop and validate the

proposed medical application.
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