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Abstract—The introduction of soft robots has led to the
development of inherently safe and flexible interventional tools
for medical applications, when compared to their traditionally
rigid counterparts. In particular, robot-assisted surgery is one
of the medical applications that benefits from the inherent
properties of soft instruments. However, robust control and
reliable manipulation of soft tools remain challenging. In this
paper, we present a new method based on reduced finite element
method model and closed-loop inverse kinematics control for
a fiber-reinforced soft robot. The highly flexible, pneumatically
driven soft robot has three fully fiber-reinforced chamber pairs.
The outer diameter is 11.5 mm. An inner working channel of
4.5 mm provides a free lumen for in-vivo cancer imaging tools
during minimally invasive interventions. Here, the manipulator
is designed in order to retrieve a tissue biopsy which can then be
investigated for cancerous tissue. Simulation and experimental
results are compared to validate the model and control methods,
using one-module and two-module robots. The results show
a real-time control is achievable using the reduced model.
Combing the closed-loop control, the median position tracking
errors are generally less than 2 mm.

I. INTRODUCTION

For a long time, one way of ensuring positioning accuracy
in robotics included the increase of stiffness in an articulated
robot structure. But the metrics used, especially absolute po-
sitioning in space, were derived from use cases in industrial
environments. In these settings, traditional robotic arms were
made of rigid materials. For surgical robotics applications,
the environment is fundamental different and the metrics
have naturally evolved, giving a particularly interesting use
case for soft robots. The need for performance, however,
remains, which is sometimes challenging to obtain.

In this paper, we focus on a use case involving a soft
robot for an automatic scanning tool during a laparoscopic
procedure. To guarantee a precise scanning procedure, the
robot requires a good relative positioning accuracy of its
tip with respect to an organ surface. At the same time, this
interventional application inside the human body demands an
inherently safe robotic tool, which advocates for the usage
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Fig. 1. The physical (top) and modelled (bottom) (a) one-module and (b)
two-module soft manipulators in SOFA.

of inherently soft materials. The challenge is to increase the
relative positioning accuracy for a robotic manipulator made
of soft material. Hence, the contribution of this paper lies
in a new method based on reduced finite element method
(FEM) model and its closed-loop inverse kinematics control,
adapted for a fiber-reinforced soft robot for laparoscopy.

A. Background

Compared to rigid-link robots, soft continuum robots have
a variety of design morphology and actuation principles [1].
The generalisation of a kinematic or dynamic modelling
framework for soft robots is challenging [2]. One prominent
modelling approach is the constant curvature (CC) model.
The curvature along the back bone of a soft manipulator
is assumed to be constant. Hence, the kinematic shape can
be described by the curve length, curvature and out-of-plane
angle [3]. The CC model can be extended to a piece-wise
constant curvature (PCC) model, where a continuum robot
is discretised into sections. Each section has a constant
curvature [4]. In such way, a robot can have sections of
different curvatures [5]. Based on the (P)CC assumptions, the
dynamics model can be established, e.g., considering a robot
is composed of virtual prismatic or revolute joints [6]. In ad-
dition, general variable curvature models have been explored,
for instance, the Cosserat rod models [7], [8], the piece-
wise constant strain model [9], the beam mechanics [10] or
FEM models [11]. As some approaches are computationally
expensive, the shape interpolation [12] technique or reduced-
order models have been explored [13] to improve efficiency.

Once the forward kinematics or dynamics models are



determined, the model-based inverse control can be imple-
mented. Based on the (P)CC assumption, analytical inverse
approaches can be calculated, for instance, via the closed
form [14] or the differential Jacobian [15]. Della Santina
et. al described dynamic impedance control when a soft
robot is in physical interaction with the environment [16]. A
real-time simulation and control method of soft robots with
self-collisions is proposed in [17], based on a reduced-order
FEM and implemented using SOFA [18]. Alternatively, the
optimisation-based method can be used, e.g., constructing
the initial conditions by including the actuation variables,
the shooting method can solve the inverse control by min-
imising the errors of the boundary based on the Cosserat
rod model [19]. Apart from model-based inverse control,
learning approaches can be advantageous to deal with the
un-modelled uncertainties and external disturbances [20].
Those modelling and control advances have facilitated the
development of soft robots. In particular, the medical sector
has emphasised increasing levels of autonomy to achieve safe
and efficient robot-assisted surgeries [21]. In this case, robust
and reliable control and manipulation of medical soft robots
are of paramount importance.

B. Contribution and outline

In this paper, we first present the design of a highly
flexible, pneumatically driven soft continuum robot, which is
a miniaturised version of the STIFF-FLOP design [14]. The
robot has three fully fiber-reinforced chamber pairs. Made
of sewing thread, this fiber avoids the radial expansion. The
outer diameter is 11.5 mm. An inner working channel of 4.5
mm provides a free lumen for in-vivo cancer imaging tools
during minimally invasive interventions in cancer surgery.
Here, a device is introduced through the inner free channel
of the manipulator in order to retrieve a digital biopsy
thanks to the molecular analysis of tumor and peri-tumoral
tissues using a mass spectrometry based technology, the
SpiderMass [22]. We then present the formulation of a
reduced FEM model with the open-loop and closed-loop
control, based on the hypothesis of the inextensibility of the
fiber-reinforcement layer (see Fig. 1). The challenge is to
use our new movement parameterization model to do real-
time control. A comparison between the computational and
experimental results validates our approach.

CROSS-SECTIONAL DIMENSION OF THE SOFT ROBOT

D Symbol Description Value  Unit

\ / D, D,, Diameter of the soft robot. 1.5  [mm]

D, \@ " —_< D, Diameter of the central lumen. 45 [mm]
\© /® D, Inner diameter of the chambers. 1.5 [mm]
p—= < N ' %) D, Diameter of the chamber position. 8.0  [mm]
! @ /6%\ D, Diameter of the reserved slots. 1.5 [mm]
v \©' > o, Angle between two adjacent chambers. 60.0  [deg]

D, Dw D Outer diameter of the chamber. 2.5 [mm]

Fig. 2. Overview of dimensions of the cross-sectional geometry. Two
adjacent chambers are actuated as one pair, which have been marked in the
same colour. One segment has an outer diameter of 11.5 mm, the actuation
chambers have an inner diameter of 1.5mm. The free inner lumen has an
inner diameter of 4.5 mm. The length of one module is 55 mm.

The remainder of the paper is organised as follows:
Section II discusses the medical background for in-vivo
cancer imaging and presents the design of the medical
soft instruments. Section III then details the reduced FEM
model with the open-loop and closed-loop inverse kinematics
control. Section IV then reports the validation results from
the simulation and experiments, using one-module and two-
module robotic manipulators. Section V presents the discus-
sions, and the conclusions are presented in Section VI.

II. REQUIREMENTS FOR IN-VIVO CANCER
INTRAOPERATIVE IMAGING IN CANCER SURGERY USING
SPIDERMASS TECHNOLOGY AND ROBOT DESIGN

A. Context : In-vivo cancer imaging

Surgery is essential and remains the first frontline treat-
ment of solid cancers. In order to determine the exact exten-
sion of the cancer, to preserve non-cancerous tissue at most,
robotic imaging may give useful informations the surgeon.
Our envisioned technology is based on the mini-invasive
real-time mass spectrometry (SpiderMass Technology) [23],
within Minimally Invasive Surgery (MIS) context. Compared
to traditional in-vivo imaging (CTscan, IRM) and margin
verification systems (Histology and immunohistochemical
analysis), which are time-consuming and limited, the Spi-
derMass Technology can analyse the cells in real-time and
distinguish the different cell phenotypes therefore making
possible to discriminate types, subtypes and grades of solid
tumors [24]. It uses an optical fiber to bring the laser beam to
the surface and a transfer line to bring the aerosol produced
by the laser ablation up to the mass spectrometer for further
analysis. Combining this real-time imaging technology with
soft robots might result in a significant reduction in operation
time and impact on the patient’s health. Soft robots, due to
their high dexterity and intrinsic safety, are very adapted to
sensitive and narrow context, such as MIS. To product quick
and accurate images, the point per point scanning have to
be automatic, and soft properties may gives more security
guarantee compared to rigid robot. This medical context
leads to our design and to the constrains we want to satisfy.
A hollow robot is also needed to be able to pass and protect
the optic fiber and the suction tube of the SpiderMass system.

TABLE I
LIST OF MEDICAL TOOLS INSERTED THROUGH THE INNER WORKING
CHANNEL OF THE SOFT ROBOT FOR in-vivo CANCER IMAGING.

Components Diameter [mm] Descriptions

Vacuum tube 1.5 mm Retrieving the biopsy samples.

Actuation pipes* 1.0 mm Three actuation pipes.

Depth sensor 1.0 mm Checking the focal distance

the laser ablation (three wires).
Optical fiber 0.7 mm Ablating the organs.
Position sensor 1.0 mm For the closed-loop control (one wire).

* The actuation pipes are passed through the preserved three slots parallel
to the central working channel (see Fig. 2).



B. Design of one soft robotic module

Based on the introduced cancer imaging application, a
pneumatically driven soft module is presented (see Fig. 1(a)),
with an outer diameter of 11.5 mm (less than the diameter of
the commercially available trocar port which has a diameter
of 12 mm). An inner lumen of a 4.5 mm diameter is embed-
ded. The length of one robot module is 55 mm. Connecting
two robot modules in series results in a two-module robot
which is highly flexible and dexterous (see Fig. 1(b)). The
robot body is made of a low shore hardness silicone (Ecofex
00-50, SmoothOn). The robot has six fully fiber-reinforced
chambers distributed evenly [25]. Two adjacent chambers
are internally connected via a 1 mm silicone pipes and
actuated as one pair. The robot fabrication can be referred
to [14], [26]. To keep the inner lumen free for instrumental
components (see Table. I), e.g., the optic fiber and sensor
wires, three 1.5 mm diameter slots are preserved along the
lumen to place the actuation pipes of a 1 mm diameter (see
Fig. 2). For closed loop position control, the inner lumen
offers sufficient space for an additional positioning sensor
and depth sensor, so that the end effector is put at the focal
distance of the surface to be analysed. Details of the cross-
sectional geometries are shown in Fig. 2.

III. MODELLING AND CLOSED-LOOP CONTROL METHOD

The modelling and associated control methods require a
trade-off between the accuracy and computational time. The
quality of the control is impacted by the accuracy of the
model, but in a feedback control scheme, the computation
time is also of paramount importance. A high-frequency
simulation will be beneficial for choosing control coefficients
leading to a robust system, that is able to effectively resist
perturbations and returns minimal modelling errors. In order
to be able to compute real-time positioning, we derive a
reduced FEM model to compute the elastic internal forces in
a reduced beam space. In practice, we compute all internal
forces and the impact of the actuation in the FEM space, but
we solve the equilibrium of forces in this reduced space.

A. Modelling of the reduced model

1) Reduced beam kinematics: In beam theory, the motion
of points follows certain assumptions. In particular, the cross-
sections are assumed to be rigid, so the motion of any point
in the beam can be parameterised by the central axis motions.
This assumption of a rigid section is motivated by the use of
fiber-reinforced chambers in the design. We use this beam
kinematics to reduce the size of the motion coordinates of
the model. To model forces on the soft robot module, we use
a 3D FEM model, meshed with nodes. Then, the position of
any nodes of the FEM can be deduced from the degrees of
freedom (DOFs) of the beam. This yields in (1).

x = A(q) (1)

where x denotes position of all nodes (denoted by p,,) of the
FEM mesh, and g denotes position of the beam’s DOFs (see
Fig. 3). A(q) creates a static link between the FEM nodes
and beam, i.e., the position of the FEM points is static in
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Fig. 3. Scheme of the link between the FEM nodes p;, and the beam DOF
positions gz.

the beam frame. For each point of the FEM, we associate a
barycentric reference Rypqry(pn,t) by interpolation

Rbm'y (pna t) = Slerp(‘]k (t)a qk+1 (t)a l(pn)) (2)

where ¢ is the position of the kth DOF of the beam,
and slerp() is the interpolation function for position and
orientation between two nodes of the beam. Details on the
interpolation method are described in [27]. [(p,) is the
function that associates the p, nodes to the position of
the barycentric reference between two beam nodes. In the
barycentric reference associated to each point, the position
of the node p,, of the FEM mesh is static and described by

pn(t)Rba'V'y (pn7t) - pn(O)Rbary(pnaO) (3)

This models the fiber around the pneumatic cavities. As
the distance between the FEM point and the beam node is
fixed, the FEM mesh does not expand laterally due to fiber
constraints. Expressing p,,(¢) in the global frame yields

Rbary (p’rH t)_lpn (t)Abs = Rbary (pna 0)_1pn(0)Abs (4)

The subscript Abs refers to the absolute position in the global
frame. As such,

DPn (t)Abs = Rbn,ry (pna t)Rbary (pru 0)71]771, (O)Abs (5)

In practice, this link is made in the SOFA framework using
BeamAdapter Plugin [28]. For a small displacement or speed,
the derivatives of node position x from (1) are described by

0A der 0Adg
3 q and E—a—qa (6)

2) Forces projection : To model the structural non-linear
elasticity and the pneumatic actuation, we compute the force
balance on a volume 3D FEM model. To bring the non-linear
forces f(z) of the FEM mesh to the DOFs of the beam, we
use the principle of virtual works which is independent from
the references. The virtual displacement dq (or dz in the
FEM space) makes the forces to work, this yields

dW = da” f(x) = d¢" 7(q) (7N

with 7(¢) as the internal forces, expressed in this reduced
space. The Jacobian matrix J of the function A(q) is



introduced to achieve the coordinate transformation by

A
J = % so with (6), it is obtained :
q

By using the Jacobian matrix from (8), the forces in the FEM
space expressed in the beam space are

JTf(z) =7(q) 9)

In practice, a linearisation is computed at each step to
compute the equilibrium.

dx = Jdq (8)

of

JVf(x+dx) = JT(f(2) + %dx)

~ JT f(A(q)) + JTKJdg

(10)

K= % is the non-linear stiffness of the structure computed
by FEM. This forces equilibrium is solved at each time step
in the SOFA simulation. For the dynamics, we may calculate
the same kind of projection. However, the implicit integration

scheme is dampening the dynamics at this frame rate.

B. Comparison with the full FEM model

To validate and to measure the performance gain, the
reduced model is compared with a classical FEM model
without any beam motion reduction. In this simulation, we
model the impact of the reinforcement fiber using stiff
springs. These springs are placed around the cavity in the
FEM, to reproduce the effect of real fibers constraining lat-
eral deformation of the module (i.e., preventing ballooning).

1) Elastic parameters: As the impact of the reinforce-
ment fiber is directly modelled in the classical FEM, the
equivalent Young’s modulus of Ecofex 00-50 is 100 kPa. For
the reduced model, the force projection introduces artificial
stiffness in the simulation. This artificial rigidity may be due
to the beam assumption, i.e., the cross-section is rigid. So, the
shrinking effect of the cross-section is constrained. Hence,
the Young’s modulus in the reduced model is 83 kPa, derived
from the gradient descent optimisation.

2) Accuracy comparison: To investigate the accuracy
between the two modelling techniques, three tests were
conducted. 0 to 100 kPa were applied to one, two and three
chamber. The positioning comparison results are displayed in
Fig. 4. Globally, the positioning properties of the two models
are very similar. We may see that for very large deformations,
the reduced model looks to introduce artificial rigidity, that
may be due to the static cross-section assumption of the robot
in the reduced model.
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Fig. 4. Simulation comparisons between the classical and reduced FEM.

TABLE I
SUMMARY OF PERFORMANCE OF THE FULL & REDUCED FEM MODEL.

1 module 2 modules
Time [s] FPS* Time [s] FPS*
Full FEM 179.69 (0.83)  5.56 (0.02) 607.01 (0.90)  1.64 (0.01)
Reduced model ~ 38.32 (2.28) 26.16 (1.48)  71.76 (0.71) 13.93 (0.14)

All the value are the mean value for 4 experiments, described with their
standard deviation. (*FPS = Frame Per Second)

3) Computational performance comparison: To under-
stand the computational expense, we run simulations in an
open-loop control scenario, that drew a 40 mm diameter
circle, as described in Experiment 2 (see Section IV-B). The
simulations ran for 1000 iterations, each with a 0.1s time
step. Each experiment ran 4 times. Table II summarises the
mean time and FPS with the associated standard deviations.
The computation of the reduced model is faster than the full
FEM model. For the simulation of one module it is about
4 times faster. For the other simulations, it is about 8 times
faster. Indeed, the complexity of the computation is different:

o for the full FEM model, most of the computation is
dedicated to the factorization of the sparse FEM matrix
system which has a theoretical complexity O(n?).

« for the reduced model, most computational time is spent
on the projection of matrix K in the reduced space
(JTK.J shown in (10)) which has a linear complexity.
The time to solve the equilibrium by factorization of the
system is quick due to the fact that the size is small.

C. Inverse kinematics control

For the inverse kinematics control, we compute the in-
verse problem using an optimisation-based method [18],
based on the reduced FEM model, using the available
SoftRobot.Inverse Plugin in SOFA. In this way, the inverse
control is open-loop because no feedback from the hardware
(so y, = wyq) is obtained. To accommodate un-modelled
uncertainties, a closed-loop control is implemented using a
proportional—integral (PI) controller. The desired position yq4
is compensated by the current measured error y., so the

Closed-loop control

Open-loop control

Inverse kinematics |

Feedback position |«

Yu
o

s
Pressure

Fig. 5. The open-loop and closed-loop control scheme. yq4 is the desired
position, y,, is the input position to the inverse controller, and y,, is the
measured position. For open-loop control, y,, equals y4 without feedback
correction. While y,, is compensated by the feedback position using a PI
controller in the closed-loop control.



demand y,, in the closed-loop control equals

t
Yu = Yd + kpye + kz/ yedt (11)
0

The open-loop and closed loop control schemes are sum-
marised in Fig. 5. Please note that k, and k; are not scalars,
instead, they have a diagonal form so the controller can use
different gains to correct the position errors along three axes.
In practice, the PI parameters are determined empirically.

IV. COMPUTATIONAL SIMULATION AND EXPERIMENTAL
VALIDATION RESULTS

A. Experimental setup

The chamber pressure is regulated and monitored by
proportional pressure regulators (Camozzi K8P). Pressurised
air is supplied to the regulators by a compressor (HY UNDAI
Model HY5508). The pressure regulators are controlled by
an Arudino Due. The board sends PWMs (0~ 100%) which
are proportionally converted to (O~ 10 V) analogue control
voltages. An electromagnetic tracking system (NDI Aurora)
monitors the tip (and the middle position) of the (two-
module) robot using trackers. The positions are imported to
SOFA as feedback information for closed-loop control. A PC
runs SOFA including the simulation, inverse kinematics and
closed-loop controller. SOFA sends out the real-time desired
pressure to the Arduino Due board by serial communication.

B. Experimental protocols

Three sets of experiments were conducted to validate the
reduced FEM model and the closed-loop and open-loop
control methods. The desired position, measured position
(from NDI trackers), simulated positions (from SOFA) and
the chamber pressure were recorded. The fiber and vacuum
pipes for Mass spectrometry were inserted to the central
lumen during the experiments. The simulation steps in SOFA
were set to 0.1 s.

Experiment 1 - Point-to-point control (one-module robot):
A point table was implemented with desired points sent
out one by one (see Fig. 6). The desired height is 55
mm and 60 mm on the right-hand and the left-hand x-
y plane, respectively. To simulate a static condition, the
desired positions were updated every 20 calculation steps.
Both open-loop and closed-loop control were investigated.
Each test repeated the point table 10 times.

Experiment 2 - Spatial trajectory tracking control (one-
module robot): Four different trajectories were used to
validate the open-loop and closed-loop control. Two circular
trajectories with a diameter of 30 mm (C30) and 40 mm
(C40), and two rectangular trajectories with a side length of
20 mm (R20) and 30 mm (R30), were chosen. The desired
positions in the z-axis were kept as 55 mm. Each trajectory
was repetitively tracked for 10 times.

Experiment 3 - Spatial trajectory tracking control (two-
module robot): Two different trajectories were used to vali-
date the modelling and control for a two-module robot. The
trajectories included a circle shape with a diameter of 80
mm, and a rectangle shape with a side length of 60 mm. The

desired positions in the z-axis were kept as 110 mm. Apart
from the monitored tip position, an additional NDI tracker
was embedded in the middle of the robot (see Fig. 9(a)). The
robot’s positions were tracked 10 times for each trajectory.

C. Simulation and experimental results

Results for Experiment 1: Fig. 6(a) visualises the results
from the simulated positions (coloured in green), the desired
positions (coloured in red), the measured positions from the
open-loop control (coloured in magenta) and the measured
positions from the closed-loop control (coloured in blue).
From this figure, it can be seen that the errors from the open-
loop controller become larger when heights of the desired
points are 60 mm. Meanwhile, the green points show that the
model can track the desired positions in the SOFA simulation
environment. In general, the experimental results from the
closed-loop control have the smallest errors.

The open-loop and closed-loop control are summarised
in Fig. 6(b) and Fig. 6(c), respectively. The overall mean
errors are 0.9 mm and 3.4 mm for the open-loop and closed-
loop control. Fig. 6(b) shows that the maximum error of
the open-loop control is 10.2 mm, which occurs when the
robot approaches the furthest points, i.e., [—10, 10, 60] mm.
Compared to the results from the left-hand z-y plane (x <
0 mm, z = 60 mm), the results from the right-hand z-y
plane (z > 0 mm, z = 55 mm) have overall smaller errors,
with the maximum mean error of 2.9 mm at [10, 10, 55] mm.
Fig. 6(c) reports the error details of the closed-loop control.
By contrast, the errors are more consistent at different points,
with an overall maximum error of 1.4 mm.

Results for Experiment 2: Fig. 7 reports and compares
the recorded trajectory when the robot finished the first-
time tracking. In general, compared to Figs. 7(b) and 7(c),

— — — Desired trajectory Simulated trajectory

— Measured trajectory (open-loop) Measured trajectory (closed-loop)
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Fig. 6. Results for Experiment 1: (a) Comparison between the measured tip
position, the simulated position and the desired position for the open-loop
and closed-loop controller. The summarised mean absolute tip errors with
respect to different desired points are shown in (b) and (c).
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Results for Experiment 2: Trajectory tracking performance of open-loop and the closed-loop control. (a) Measurement of the robot’s trajectory.

Results for (b) tracking a rectangle, with a side length of 20 mm, (c) tracking a rectangle, with a side length of 30 mm, (d) tracking a circle, with a

diameter of 30 mm, and (e) tracking a circle, with a diameter of 40 mm.

Figs. 7(d) and 7(e) show the errors from the open-loop
control become larger when tracking larger trajectories.
Conversely, the closed-loop controller results in the robot
consistently and stably following the desired trajectories.
Furthermore, the summarised errors from the open-loop and
closed-loop control are reported in Fig. 8 using box plots. In
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. -

15
d =20 mm d =30 mm
12
E
5 ¥
U% 6 + i
oA ‘ ‘ ]
== ? ==
0 : !
(@ (b
15
D =30 mm D =40 mm +
12]
E, i
5 ! |
s T | =
oA - i |
) == == +
’ © @
Fig. 8. Results for Experiment 2: Summarised tracking errors using box

plots. Results for rectangles are shown in (a) and (b), with a width of 30mm
and 40mm. The results for circles are shown in (c) and (d), with a radius of
15mm and 20mm. The central red marks, the bottom and top edges of the
box indicate the median, the 25th and 75th percentiles, respectively. The
outliers are plotted using the ‘+’ symbol.

particular, the median errors from the closed-loop control are
0.8 mm, 1.2 mm, 0.7 mm, and 0.8 mm for R20, R30, C30
and C40, respectively. By contrast, the median errors from
the open-loop control are 4.5 mm, 2.4 mm, 3.0 mm, and
4.8 mm for R20, R30, C30 and C40, respectively. Moreover,
the open-loop control has smaller errors when the tracking
shapes have smaller dimensions, e.g., shown in Figs. 8(a)
and (c). The maximum errors increase when the trajectories
become larger (see Figs. 8(b) and (d)).

Results for Experiment 3: Fig. 9 reports trajectory tracking
results for a two-module robot. The inverse kinematics
controller shows effective and reliable performance as the
circle and rectangle shapes can be tracked (see Figs. 9(b)
and (c)), while the open-loop and closed-loop results have
different accuracies. Similar to Fig. 7(c), Fig. 9(c) also shows
that the error of the open-loop control becomes larger when
the robot approaches any of the four corners of the rectangle.
Furthermore, as shown in Fig. 10, the median closed-loop tip
errors are 1.6 mm and 1.9 mm for the circular and rectangular
shapes, respectively. By comparison, the median tip errors
using the open-loop control are 6.9 mm and 7.9 mm for the
circular and rectangular shapes, respectively.

V. DISCUSSIONS
A. Discussions of the model and open-loop control

In Experiment 1, the results show that the robot can
successfully follow the point-to-point command for both
open-loop and closed-loop control. The accuracy of the
open-loop control decreases when the robot travels further
distances. Similar results are observed in Experiments 2
and 3, the open-loop control accuracy deteriorates under
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Fig. 9. Results for Experiment 3: Trajectory tracking of the open-loop
and closed-loop control for a two-module robot. (a) Measurement of the
trajectory. Tracking results for (b) a rectangular shape, with a side length
of 60 mm, and (c) a circular shape, with a diameter of 80 mm.

larger desired trajectories, e.g., the non-outlier maximum
errors increase from 5.5 mm (for C30) to 8.7 mm (for C40)
for the one-module robot. This difference might result from
the modelling accuracy as the open-loop control directly
solves the inverse kinematics based on the established model.
In this work, we assumed a linear material model with a
constant Young’s Modulus. This assumption becomes less
effective when the robot undergoes larger deformation, as
the silicone material shows a nonlinear strain-stress relation-
ship [29]. As such, exploring nonlinear hyper-elastic models
might improve the modelling accuracy and further mitigate
the errors from the open-loop control. For instance, it was
reported that the Neo-Hookean model could be used to model
the fiber-reinforced bending actuator when the elongation is
less than 50% [30]. Furthermore, the cross-sectional area
will shrink when the robot elongates, in particular, when the
material is incompressible, as reported in [31]. Considering
this cross-sectional deformation in the reduced model could
also improve the modelling accuracy.

B. Discussions of the closed-loop control

Experiments 1-3 show that the closed-loop control can
reliably improve accuracy of the point-to-point and trajectory
tracking performance. By introducing position feedback,
the closed-loop control first can mitigate the inaccuracy of
the material model discussed in Section V-A. It can then
alleviate the un-modelled uncertainties, e.g., the potential
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Fig. 10. Results for Experiment 3: Summarised tracking errors for (a) a

circle with a diameter of 80 mm, (b) rectangle with a side length of 60 mm.

inconsistencies of the robot fabrication or errors for the
pressure control. As shown in Fig. 11, the comparison of
the actuation pressure for the open-loop and closed-loop
control of the one-module robot for C40 circle tracking are
reported. The dotted pressure curves are derived based on
the model-based inverse kinematics, and the solid curves
are the pressure values from the closed-loop control. The
differences between two curves are the efforts that the closed-
loop controller takes to correct the uncertainties. Although
the closed-loop control can improve the control accuracy, it is
worth mentioning that the position sensing needs additional
sensors. Adding position sensors might be challenging for
the targeted medical application. Improving the modelling
accuracy can be helpful. In addition, exploring proprioceptive
sensing is meaningful [32] for achieving a self-contained
closed-loop control. Moreover, we focused on the quasi-static
scenario in this work. However, dynamic behaviours were
also observed during the point-to-point tests, indicating the
consideration of a dynamic model that might improve the
controlled manoeuvrability of the robot.

VI. CONCLUSIONS

Aiming at applying soft robots for cancer imaging in
minimally invasive interventions, we first designed a flexible
modular soft instrument prototype, with an outer diameter of
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Fig. 11. Comparison of pressure values for open- and closed-loop control

for the one-module robot following a 40 mm-diameter circular trajectory.



11.5 mm. The robot can be inserted through a commercially
available 12 mm trocar port. The robot is equipped with
an inner free lumen of a 4.5 mm diameter, which can
accommodate the optic fiber and vacuum pipes for retrieving
biopsies. In addition, two modules have been connected to
achieve higher flexibility (see Fig. 1). We applied the reduced
FEM technique to model and control both the one-module
and two-module soft robots using SOFA. The simulation
demonstrates performances of the reduced FEM is at least
4 times faster than a classical FEM model. The simulation
and experiments were both conducted to further validate the
reduced FEM model and inverse control. To compensate un-
modelled uncertainties in the open-loop control and improve
the control accuracy, we introduced the closed-loop control
using position feedback.

In future work, we will first aim to improve the model
accuracy which can further produce better open-loop control
results, e.g., by introducing nonlinear hyper-elastic material
models and considering the dynamics behaviour. In addition,
we will integrate the soft instrument prototypes to the phan-
tom and the SpiderMass device to develop and validate the
proposed medical application.
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