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Abstract
Soft robots have been investigated for various applications due to their inherently superior deformability and flexibility
compared to rigid-link robots. However, these robots struggle to perform tasks that require on-demand stiffness, i.e., exerting
sufficient forces within allowable deflection. In addition, the soft and compliant materials also introduce large deformation
and non-negligible nonlinearity, which makes the stiffness analysis and modelling of soft robots fundamentally challenging.
This paper proposes a modelling framework to investigate the underlying stiffness and the equivalent compliance properties
of soft robots under different configurations. Firstly, a modelling and analysis methodology is described based on Lie theory.
Here, we derive two sets (the piecewise constant curvature and Cosserat rod model) of compliance models. Furthermore,
the methodology can accommodate the nonlinear responses (e.g., bending angles) resulting from elongation of robots. Using
this proposed methodology, the general Cartesian stiffness or compliance matrix can be derived and used for configuration-
dependent stiffness analysis. The proposed framework is then instantiated and implemented on fluidic-driven soft continuum
robots. The efficacy and modelling accuracy of the proposed methodology are validated using both simulations and
experiments.
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1 Introduction

The field of robotics has experienced a paradigm shift
from traditional robots, made of rigid links and joints, to
soft robotic structures (Laschi et al. 2016). Soft robots
often distinguish themselves from traditional robots by their
intrinsic dexterity, biological morphology, and adaptability
to unstructured environments (Shepherd et al. 2011; Arezzo
et al. 2017; Rus and Tolley 2015). These versatile capabilities
can be (in)directly credited to the compliant properties of
the soft materials used to construct the robots. Soft robots
have been investigated for safety-related applications in
the industrial sector where robots work closely together
with humans (Stilli et al. 2017), in minimally invasive
interventions (Cianchetti et al. 2014; Abidi et al. 2018), and
rehabilitation (Camp et al. 2021).

The stiffness (or its inverse, i.e., the compliance) of a
soft robot can be mathematically described by the Young’s
modulus defined as the relationship between an applied
load and its corresponding deflection. The term soft robot
fundamentally implies that the Young’s modulus of such a
robot is a few orders less than 109 − 1010 Pa, a Young’s
modulus range for conventional robotic materials such
as metals and hard plastics (Majidi 2014). Soft robots,
however, are made of materials with a Young’s modulus of
approximately 104 − 106 Pa, and they behave in a compliant
way when in physical interaction with the environment. As
a result, it might be challenging for soft robots to exert
sufficient forces on demand. Hence, the investigation of
stiffness property and stiffness adjustment is profoundly

important to the design, modelling and control of soft
robots (Mahvash and Dupont 2011; Naselli and Mazzolai
2021; Komatsu et al. 2021).

1.1 Related work
A number of stiffening mechanisms have been investigated
to vary compliance of soft robots. These can be categorised
into semi-active techniques, such as actuators that can
change their Young’s modulus, and active actuators (Manti
et al. 2016). Techniques for achieving stiffness variation
in semi-active and active ways include the integration of
granular material (Konstantinova et al. 2022), use of an
alloy with a low melting point (Peters et al. 2019), and the
combination of tendon-driven and air pressurisation through
antagonistic actuation (Shiva et al. 2016). Researchers
have highlighted challenges in embedding these stiffness
mechanisms in soft manipulators for space-restricted
applications, such as minimally invasive surgery (Runciman
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Table 1. Summary of soft robotic modelling and stiffness/compliance analysis.

Key authors Robot type Model (model type) Material Cartesian compliance Configuration-dependent Compliance
behaviour modelling compliance analysis distribution

Trivedi et al. (2008) Pneumatic-drivene Cosserat rod (statics) Nonlinear ✘ ✘ ✘

Rucker et al. (2011)
Smoljkic et al. (2014)

(Concentric) rodi Cosserat rod (statics) Linear Finite differentiation ✘ ✘

Black et al. (2017) Parallel roboti Cosserat rod (statics) Linear Finite differentiation Ellipsoid ✘

Oliver-Butler et al. (2019) Tendon-driveni Cosserat rod (statics) Linear ✘ ✘ ✔

Della Santina et al. (2020) Pneumatic-driveni PCC (dynamics) Linear Jacobian projection ✘ ✘

Sadati et al. (2021) Pneumatic-drivene Reduced order (dynamics) Linear ✘ ✘ ✘

Hussain et al. (2021) Tendon-driveni Screw theory (dynamics) Linear Jacobian projection Ellipsoid ✘

Amanov et al. (2021) Tendon-drivene Cosserat rod (statics) Linear ✘ ✘ ✘

Caasenbrood et al. (2023) Pneumatic-drivene PCC (dynamics) Nonlinear ✘ ✘ ✘

This work Pneumatic-drivene Lie theory (statics) (Non)linear Compliance integration Matrix structure analysis ✔

* ✘ and ✔ denotes the corresponding modelling or analysis is not considered or considered, respectively; The superscript e denotes the backbone of the
robot can elongate. The superscript i denotes the elongation of the backbone is negligible or inextensible.

et al. 2019). Apart from the aforementioned mechanism
design, the stiffness characterisation is advantageous for
understanding the payload capability of the soft robots.
An experimental-based stiffness assessment is presented
by Ranzani et al. (2016), characterising the planar stiffness
of a single pneumatic-driven modular manipulator. A similar
approach is followed by Mustaza et al. (2018), where the
spatial compliance ellipsoid was experimentally identified.

Once the stiffness properties of soft robots are compre-
hended, the subsequent stage is to formulate their statics
or dynamics models. Various beam theories, such as the
Euler-Bernoulli beam theory (Stilli et al. 2018) and the
Timoshenko beam (Lindenroth et al. 2016), have been in-
vestigated to establish the forward kinematics of soft robotic
manipulators. The utilisation of the Euler-Bernoulli beam
theory has also demonstrated that the flexural rigidity of
tendon-driven robots is subject to variation based on tendon
stiffness, thus influencing robot kinematics (Oliver-Butler
et al. 2019). The Piecewise Constant Curvature (PCC) model
is a well-known method for statics and dynamics modelling
of soft robots (Webster III and Jones 2010; Caasenbrood

et al. 2023). This model assumes that the curvature along
the robot’s length is constant. When calculating the re-
sulting strains from applied moment and torque, the PCC
model requires consideration of bending and elongation stiff-
ness (Sadati et al. 2017). Common variable curvature models
include the Cosserat/Kirchhoff rod theory (Renda et al. 2018;
Grazioso et al. 2019). A geometrically exact Cosserat model
was proposed in Trivedi et al. (2008) to describe the forward
kinematics of multi-segment continuum robots, considering
material nonlinearities. Based on the Cosserat rod theory, the
forward kinematics are modelled for a three-segment tendon-
driven continuum robot with extensible sections (Amanov
et al. 2021). Furthermore, a real-time dynamics modelling
framework, based on the dynamic Cosserat rod equations, is
applied to a tendon-driven continuum robot, parallel robot,
and fluidic-driven soft robot (Till et al. 2019). In addition, a
Cosserat model-based method is proposed for a pneumatic-
driven continuum robot with braided chambers to then
further sense environmental stiffness in real-time (Sadati
et al. 2020). A new discretised model and a Matlab package
(TMTDyn) was then presented for hybrid rigid-continuum
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Figure 1. Diagram of the proposed Lie theory-based framework incorporating forward kinematics, stiffness modelling and analysis. This
stiffness modelling and analysis framework accommodates the nonlinear behaviours of kinematics, exemplified by the piecewise constant
curvature (PCC) model and the Cosserat rod model, and achieves a configuration-dependent stiffness analysis.
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systems based on Euler-Bernoulli beam and Cosserat rod
model (Sadati et al. 2021). Based on the material properties,
numerical analysis can be conducted, e.g., using Finite Ele-
ment Modelling (Elsayed et al. 2014; Koehler et al. 2019;
Zupan and Saje 2003). In summary, the aforementioned
modelling techniques are built on known stiffness properties
of robots. The material properties (e.g., Young’s modulus),
together with bending, elongation and shear stiffness, are
usually considered to calculate curvatures and strains from
actuation forces. The resulting curvatures and strains com-
plete the statics or dynamics models. However, a thorough
stiffness description and analysis for soft robots, e.g., the
Cartesian stiffness, is not investigated in these models.

The importance of understanding configuration-dependent
stiffness has been proven for traditional rigid link and
continuum robots (Ajoudani et al. 2017; Gravagne and
Walker 2002; Ajoudani et al. 2015; Stella et al. 2023).
The difference between stiffness controllability in traditional
rigid robots compared with soft robots primarily lies in the
generation of compliance. In rigid robots, the compliance
is provided by finite variable stiffness joints (Wolf et al.
2015). The stiffness matrix in Cartesian space is determined
based on the Jacobian projection (Salisbury 1980; Alici
and Shirinzadeh 2005). Instead, many soft robots are
considered continuum manipulators without physical joints,
the compliance is distributed along the robots (Naselli and
Mazzolai 2021). A pioneer work for compliance analysis
of continuum robots is to use ellipsoid analysis (Gravagne
and Walker 2002), analogous to the techniques used in the
rigid-link robots. The stiffness properties of soft robots can
be characterised by discretising their structures into finite
elements with a diagonal stiffness matrix, using the Cosserat
rod model for instance (Renda et al. 2018). With this
approach, researchers have proposed a Cartesian impedance
control method for planar soft robots composed of multiple
segments, assuming a PCC model (Della Santina et al. 2020).
Moreover, there are efforts towards a detailed analysis of
passive stiffness in soft robots, such as the development
of an augmented Jacobian-based method using Ordinary
Differential Equations (ODEs) to obtain the compliance
matrix (Rucker et al. 2011), and the establishment of
statics models based on the Cosserat rod theory. Such
a concept was then adopted and developed by Black
et al. (2017) to analyse the stiffness response of a
parallel continuum robot under different configurations.
Inspired by Rucker et al. (2011), a new set of compliance
differential equations, which was directly coupled to the
forward kinematics, to derive the compliance matrix of
continuum robots (Smoljkic et al. 2014). However, the
robotic manipulators were approximated to the slender
Kirchhoff rod, whilst large elongation observed in soft robots
were not considered (Gong et al. 2021; Caasenbrood et al.
2023).

As for the specific mathematical tool for the compliance
modelling in robotic field, Lie theory (Sonneville et al.
2014) and, in particular, screw theory have been utilised in
robotics for it concisely interprets rigid-body motions, such
as kinematics and statics modelling (Renda et al. 2017),
parameter calibration (Sun et al. 2020; Cibicik and Egeland
2021) and identification (Fu et al. 2020), and compliance
analysis (Qi et al. 2016; Selig and Ding 2001; Ding and

Dai 2010). In addition, an analytical model was presented
in Hussain et al. (2021) to model and analyse the stiffness
ellipsoids for a tendon-driven soft-rigid gripper.

1.2 Problem statement and motivation
Soft robots are compliant, generate continuous deformation,
and are essentially infinite dimensional systems. As
presented in Section 1.1, the stiffness properties of soft
robots are usually the foundation to establish statics
and dynamics models (see Table 1). Then, understanding
and modelling the configuration-dependent stiffness are
essential to achieve on-demand stiffness control (Stella
et al. 2023). Nevertheless, current stiffness modelling
techniques primarily apply finite or partial differentiation
(e.g., (Mahvash and Dupont 2011; Black et al. 2017; Rucker
et al. 2011)) and map virtual joint stiffness to the task space
using the Jacobian (e.g., (Renda et al. 2018; Della Santina
et al. 2020)). These calculations might be extensive. For
instance, the dimensions of the Jacobian matrix are usually
large and depend on the number of virtual joints. Moreover,
the description of the compliance distribution along the robot
is equivalently important, but less investigated in the current
literature. Table 1 further supports the gap in exploring a
general stiffness analysis.

As such, a systematical modelling approach and analysis
of configuration-dependent stiffness and compliance distri-
bution remain challenging. Moreover, for elastomer-based
soft robots, the elongation of the robots’ backbone often
reduces the cross-sectional area. This behaviour introduces
nonlinearities and also influences stiffness properties of these
robots. Motivated by the aforementioned considerations, a
stiffness modelling and analysis framework should make an
important contribution to the soft robotics community.

1.3 Contributions and outline
In our previous work (Shi et al. 2021), we proposed
a Cartesian stiffness modelling method based on the
PCC model for a single fluidic-driven soft robot. The
paper included preliminary validation data on the tip
stiffness. Going beyond our previous work, this paper
proposes a Lie theory-based stiffness modelling and analysis
framework for soft fluidic-driven robotic manipulators
to investigate their underlying stiffness characteristics
and deliver a configuration-dependent stiffness/compliance
analysis. Our framework, illustrated in Figure 1, incorporates
forward kinematics and stiffness modelling, considering the
nonlinearity introduced by the elongation. Hence, the linear
and nonlinear material behaviours are explored, embedded in
the PCC model and the Cosserat rod model. To validate our
framework, we apply it to a single soft fluidic-driven robotic
manipulator and a manipulator composed of two segments.
This work provides an approach to analyse the general
stiffness based on the commonly used static kinematics
models. In particular, the contributions made by this work
are:

1. Our proposed Lie theory-based modelling framework
(see Section 2) is capable of configuration-dependent
stiffness modelling and analysis at different static
robot configurations from forward kinematics models
(e.g., the PCC and Cosserat rod models). This
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Table 2. Parameters and notations.

Symbol Definition

(̂·) or (·)̂ Mapping from R3 to so(3), or from R6 to se(3)

(·)∨ Inverse operation of (̂·) or (·)̂, i.e., (̂·)
∨
= (·)

(·)b A variable expressed in the body (material) frame
(·)o A variable expressed in the global (spatial) frame
{·} Representation of a frame, i.e., the global and body frame

are {Oo, xo, yo, zo}, {Ob, xb, yb, zb}
(·)(s) A variable has a function of the arc length variable s

(·)i A variable at the position i along the curve s

(·),x|y|z The x, y or z component of a variable
(·)s ∂(·)/∂s, derivation of a variable with the arc length s

(̃·) A variable after elongation
δ(·) An infinitesimal variation of a variable
∆(·) A variation of a variable
(·)j The jth iteration step in the nonlinear compensation
|| · ||F Frobenius norm of a variable
|| · ||2 Euclidean norm of a variable
T ∈ R6, a twist expressed in the Plücker axis coordinate
W ∈ R6, a wrench expressed in Plücker ray coordinate
Sa ∈ R6, a screw vector expressed in the frame {a}
gab ∈ R4×4, the homogeneous transformation of the

frame {b} expressed in the frame {a}
Rab ∈ R3×3, the translation vector of the frame {b} expressed

in the frame {a}
pab ∈ R3, the rotation matrix of the frame {b} expressed

in the frame {a}
Adab ∈ R6×6, adjoint matrix of the frame {b} expressed in the

frame {a}
∆ ∈ R6×6, elliptical polar operator
c(s)i ∈ R6×6, compliance density matrix at the position i,

c(s)i = diag[cse(s)i, cbt(s)i]

cse(s)i ∈ R3×3, compliance density matrix containing shear and
elongation, its inverse is kse(s)i

cbt(s)i ∈ R3×3, compliance density matrix containing bending
and torsion, its inverse is kbt(s)i

C(s)i ∈ R6×6, the Cartesian compliance matrix, with the tip
compliance matrix denoted by C

Ct(s)i ∈ R3×3, the translational compliance matrix
K(s)i ∈ R6×6, the Cartesian stiffness matrix, with the tip

stiffness matrix denoted by K

κ(s)i Curvature of an arc along the central backbone
s(s)i Length of an arc along the central backbone
ϕ(s)i Angle between the bending plane of the arc and x-z plane
v(s)i ∈ R3, derivative of the position poi(s) with respect to s

u(s)i ∈ R3, derivative of angular change with respect to s

ni(s) ∈ R3, internal force along the rod
mi(s) ∈ R3, internal moment along the rod
fe(s)i ∈ R3, distributed external force per unit s
fg(s)i ∈ R3, distributed gravitational force per unit s
le(s)i ∈ R3, external moment per unit s
fP (s)i ∈ R3, distributed force from pressurisation per unit s
lP (s)i ∈ R3, distributed moment from pressurisation per unit s
Ω A general actuation variable
Pk Actuation pressure in the kth chamber
λ1|2|3 The principle material stretch ratios
kd ∈ R3, a position vector of the kth chamber
kφ The angle of the kth chamber related to the +x-axis
α1 Angle between two adjacent chamber pairs
α2 Angle between two adjacent chambers
A(s) Area of the cross-section
I,x|y|z(s) Second moment of area about the x-, y- or z-axes
rm1|m2 Radius of the soft robot and the inner lumen
ro Radius of the central position of the chamber
rP Radius of the pneumatic chamber
l0|t|b length of the chamber, top and bottom sealing part
pw ∈ R4, augmented variable containing position and stiffness
∆f ∈ R3, variation of the applied force
∆x|y|z∆f ∈ R3, variation of the displacement resulting from

the applied force ∆f

∆Ex|y|z The position differences from different simulations

framework considers nonlinear responses resulting
from large longitudinal deformations (e.g., when
elongating or bending) as presented in Sections 2.3 and
validated in Sections 5.2.

2. Our methodology demonstrates that the robot compli-
ance can be derived by various integration schemes
based on the obtained static configurations of soft
robots, without using Jacobian projections or finite
differentiation (see Section 2.1). We showcase that
our approach allows deriving the compliance matrix
by direction integration with forward kinematics mod-
els, e.g., the proposed Cosserat rod-based compliance
model (see Section 2.2.2).

3. Our modelling framework can thoroughly reveal the
compliance distribution, and for the first time, we
achieve a detailed configuration-dependent compli-
ance/stiffness modelling and analysis for extensible
fluidic-driven continuum robots (see Section 3 and
Section 4). In Section 5, we validate computational
results compared to experiments, using soft manipu-
lators made of one and two robotic segments.

The remainder of this paper is organised as follows:
Section 2 proposes the stiffness modelling framework and
elaborates its derivations. Section 3 presents the instantiation
of the proposed framework based on pneumatic-driven soft
continuum robots. The simulation and model-based stiffness
analysis are discussed in Section 4. The experimental
validation is then presented in Section 5 to demonstrate
the efficacy and explore the accuracy of the proposed
framework. Finally, the corresponding discussions and
conclusions are presented in Section 6.

2 Theoretical framework of the stiffness
modelling and analysis

In line with Figure 1, this section presents the stiffness
modelling and analysis framework in detail. Compliance
matrices are first formulated using Lie theory based on
screws. The configuration-dependent Cartesian compliance
is built on the PCC and Cosserat models. This is the
fundamental difference compared to current approaches
that focus on forward kinematics only (see the dotted
red rectangle in Figure 1). Furthermore, our proposed
framework considers nonlinear responses resulting from
large longitudinal deformations of the incompressible
material during elongation and bending. The output of
the proposed framework includes the forward kinematics
and the general stiffness/compliance matrix, resulting in a
configuration-dependent stiffness modelling and analysis.

2.1 Cartesian compliance matrix derivation
The basics of screws and Lie theory are summarised in
Appendix B. In general, the relationship between a twist T
and a wrench W is described by

T = CW, W = KT. (1)

C is the 6× 6 compliance matrix, and K is the 6× 6
stiffness matrix with the relationship C = K−1. C and K
are interchangeable and both used in this paper.
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The soft continuum robot can be discretised into finite
elements. So in this paper, we use i to denote the ith
discretised element and s to denote the continuous curve
along the backbone (see Figure 2). The material compliance
density c(s)bi of the robot at position i, written in the body
frame (Figure 2(c)) is

c(s)bi =

[
cse(s)

b
i 0

0 cbt(s)
b
i

]
=

[
k−1
se (s)bi 0
0 k−1

bt (s)bi

]
, (2)

where s is the arc length along the backbone, and the compli-
ance density matrix cse(s)

b
i = diag[ 1

GA(s)i
, 1
GA(s)i

, 1
EA(s)i

]

contains the shear and elongation items, and cbt(s)
b
i =

diag[ 1
EIi,x(s)

, 1
EIi,y(s)

, 1
GIi,z(s)

] contains the bending and
torsion items. A(s)i is the area of the cross-section, which
decreases from A(s)i to Ã(s)i when the robot elongates,
as shown in Figure 2(a). G is the shear modulus, and E is
the Young’s modulus with E = 2G(1 + µ), where µ is the
Poisson’s ratio. I(s)i,x, I(s)i,y and I(s)i,z are the moment
of inertia about the local principle axes, varying with the
elongation as well.

The material compliance density written in the global
frame c(s)oi is described in

c(s)oi = Ad−T
oi (s)c(s)biAd−1

oi (s), (3)

where Adoi(s) is the adjoint matrix (see Appendix C),
defined by rotation matrix Roi(s) and displacement vector
poi(s). As the length of the discrete element at position i
is dsi, the material compliance matrix of the element is
c(s)bidsi, written in the body frame (Selig and Ding 2009).

From Figure 2(b), the whole manipulator is regarded as
the combination of flexible elements (Qiu and Dai 2021; Qi
et al. 2016). When a wrench Wo is applied at the tip of
a manipulator, the wrench is transmitted to each compliant
element. Based on (47), the transmitted wrench W(s)bi at
the ith element satisfies Wo = Adoi(s)W(s)bi . Based on
(51), the transformation of a twist from the body frame to
the global frame is T(s)oi = Ad−T

oi (s)T(s)bi . Therefore, the
total deformation twist To equals the aggregated twists of
each flexible element expressed in the global frame resulting
in (4) when combined with (3).

To =

∫ l

0

dT(s)oi =

∫ l

0

Ad−T
oi (s)dT(s)bi

=

∫ l

0

Ad−T
oi (s)c(s)biW(s)bids

=

∫ l

0

Ad−T
oi (s)c(s)biAd−1

oi (s)W
ods

=

∫ l

0

Ad−T
oi (s)c(s)biAd−1

oi (s)ds︸ ︷︷ ︸
Co

Wo = CoWo,

(4)

where l is the integrated length with the arc length
s. Equation (4) depends on the material properties and
configuration (poi(s), Roi(s)). Equation (4) also denotes that
the compliance matrix Co can be obtained by integrating the
compliance density expressed in a same global coordinate.
Therefore, the material compliance matrix C(s)oi along
the manipulator can be derived by varying the integration
length, where the 36 entries of this matrix are integrated
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Figure 2. Illustration of the deformed robot with a bending angle θ
(when the cross-section is circular). (a) The variation of the cross-
section is non-negligible under a large longitudinal deformation
for the incompressibility of the material. (b) The soft manipulator
comprises serially connected compliant elements. (c) An element
of the manipulator.

individually (Selig and Ding 2009; Qi et al. 2016; Qiu and
Dai 2021). The calculation of Jacobian, e.g., in Hussain et al.
(2021), is not required. The stiffness matrix can then be
obtained directly by Ko = (Co)−1.

Equation (4) represents the general integration form of the
Cartesian compliance based on static robot configurations,
illustrating that the compliance is configuration-dependent.
Various numerical integration schemes can achieve the
compliance integration of (4), once the static configurations
of robots are obtained from the forward kinematics. For
instance, the midpoint or trapezoidal integration schemes
could be applied. In this case, the total Cartesian compliance
C(s)oi up to the position i is the discrete representation of (4),
which yields (5).

C(s)oi =

i∑
h=1

Ad−T
oh (s)c(s)bhAd−1

oh (s)dsh. (5)

The number of i is the discrete element numbers. In
Section 2.2.1, we introduce the PCC-based compliance
modelling approach, utilising either the midpoint or
trapezoidal integration scheme with robot configurations
derived from the PCC model. The discrete arc numbers
in the PCC model are denoted by i, and high-order
integration schemes can also be considered. Additionally, in
Section 2.2.2, we present the Cosserat rod-based compliance
modelling approach, employing a high-order Runge-
Kutta integration scheme. We demonstrate the benefits of
performing compliance integration simultaneously with the
forward kinematics model in this case.

It is important to note that the selection of the
compliance integration scheme is not limited by the statics
models. Our approach allows for the exploration of various
integration schemes to derive compliance based on the static
configurations of robots. Therefore, any integration scheme
can be considered and evaluated within our framework.

2.2 Configuration-dependent compliance model
As detailed in Section 2.1, (4) needs to be combined with
the forward kinematics models. We complete our modelling
framework by proposing the PCC-based and the Cosserat
rod-based compliance modelling.
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2.2.1 PCC-based compliance model. In the PCC model,
the spatial backbone is depicted via a set of serially
connected discrete arc whose curvature parameters are
[κ(s)i, s(s)i, ϕ(s)i] of the ith element. κ(s)i is the curvature,
s(s)i is the curve length and ϕ(s)i is the angle of the arc that
rotates from the x-z plane. Using the exponential mapping
from Lie theory, the homogeneous transformation gi(i+1)

from ith arc to (i+ 1)th arc using screws (Webster III and
Jones 2010; Shi et al. 2021). The general form of gi(i+1) is
shown in (43) (see Appendix C.).

Substituting all the arc parameters [κ(s)i, s(s)i, ϕ(s)i]
into gi(i+1), the general forward kinematics goi(s) is

goi(s) =

i∏
h=1

g(h−1)h =

[
Roi(s) poi(s)

0 1

]
. (6)

Equation (6) can be used to get the adjoint matrix. The PCC-
based compliance modelling is derived by combining (5)-
(6). The number of i is the discrete arc numbers in the
PCC model and influences the accuracy of the calculated
compliance C(s)oi . It is worth mentioning that the piece-
wise constant curvature assumption is more applicable when
the gravitational force is negligible and no external force is
applied.

2.2.2 Cosserat rod-based compliance model. The constant
curvature assumption is not needed in the Cosserat rod
model. However, the traditional Cosserat model focuses on
the statics or dynamics, the compliance/stiffness modelling
is not included. A Cosserat rod-based compliance model
is proposed in this paper, where the stiffness modelling is
directly incorporated, without calculating the static robot
configurations in advance.

The mechanics of the rod can then be derived by a set
of partial differential equations within the Lie group (Till
et al. 2019). By convention, the subscript s means the
derivative with arc length s, namely, ∂/∂s. The variable
v(s)bi = RT

oi(s)poi(s)s denotes the first derivative of the
position in the body frame, and u(s)bi = (RT

oi(s)Roi(s)s)
∨

is the curvature in the body frame. The differentiation of the
internal force is described by ni(s)s, and the differentiation
of the internal moment is mi(s)s. Therefore, the derivative
of the position vector p(s) and the rotation matrix R(s) can
be written as

poi(s)s = Roi(s)v(s)
b
i , Roi(s)s = Roi(s)û(s)

b
i . (7)

The distributed forces and moment along the rod are
denoted by fe(s)i and le(s)i, respectively. The classic
equilibrium of the Cosseart rod satisfies{

ni(s)s = −fe(s)i,

mi(s)s = −poi(s)s × ni(s)− le(s)i.
(8)

The linear constitutive equation relates u(s)i, v(s)i to the
loading ni(s),mi(s), and the linear relationship yields{

ni(s) = Roi(s)kse(s)
b
i [v(s)

b
i − v∗(s)bi ],

mi(s) = Roi(s)kbt(s)
b
i [u(s)

b
i − u∗(s)bi ].

(9)

The variables v∗(s)bi and u∗(s)bi denote the initial strains
and curvatures of a rod. In particular, the value of a straight

rod has v∗(s)bi = e3 = [0, 0, 1]T and u∗(s)bi = [0, 0, 0]T .
kse(s)

b
i and kbt(s)

b
i are defined in (2).

Recalling (4), the derivative of the compliance matrix,
namely the compliance density, can be obtained by

[C(s)oi ]s = Ad−T
oi (s)c(s)biAd−1

oi (s). (10)

Finally, combining (7) - (10) and choosing the state
variables y as [p,R,m, n,Co]1×54, the full set of ODEs
of the Cosserat rod-based compliance model can be
summarised as

poi(s)s = Roi(s)v(s)
b
i ,

v(s)bi = cse(s)
b
iR

T
oi(s)ni(s)

+ v∗(s)bi

Roi(s)s = Roi(s)û(s)
b
i ,

u(s)bi = cbt(s)
b
iR

T
oi(s)mi(s)

+ u∗(s)bi

ni(s)s = −fe(s)i

mi(s)s = −poi(s)s × ni(s)− le(s)i

[C(s)oi ]s = Ad−T
oi (s)c(s)biAd−1

oi (s),
c(s)bi =

diag[cse(s), cbt(s)]
b
i

(11)
In general, modelling the compliance and static robot
configurations can be treated as separate entities once
the configurations are derived. However, utilising (11),
we illustrate that the compliance distribution C(s)oi along
the robot can be directly obtained by solving the ODEs
of the static Cosserat rod within the same integration
loop. This integrated approach allows us to efficiently
compute the compliance while considering the robot’s
static configurations simultaneously without increasing the
complexity of solving the ODEs of the Cosserat rod.

Numerical integration methods, such as a high-order
Runge-Kutta approach, can be used to solve (11). It is
noteworthy that if the integration truncation error of Roi(s)
results in Roi(s) /∈ SO(3), Roi(s) might be represented by
quaternion when doing the integration (Rucker 2018). If
the initial conditions are known, (11) could be integrated
directly as an initial value problem. When the initial states
are unknown, (11) can be solved as a boundary value
problem using the shooting method (Florian and Damien
2020). Equation (11) gives the analytical representation of
the distributed compliance based on the conventional static
Cosserat rod equations, where the compliance distribution is
not included (Renda et al. 2018; Till et al. 2019). Moreover,
the compliance matrix in the proposed Cosserat rod-based
compliance model is derived directly without the prerequisite
of the Jacobian or finite difference approximations (Rucker
et al. 2011; Smoljkic et al. 2014).

2.3 Nonlinear responses compensation
As introduced in Section 2.1, the fluidic-driven robot
could have large elongation under high pressurisation (Fig-
ure 2(a)). This elongation introduces nonlinear kinematic
responses (Gazzola et al. 2018; Caasenbrood et al. 2023). To
account for this nonlinearity, we introduce a compensation
method in this section, inspired by the nonlinear matrix
structural analysis (NMSA) method presented in Naselli
and Mazzolai (2021). The NMSA method addresses large
deformations in soft bodies by applying load in predefined
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steps. This method enables the use of a linear strain-stress
relation to consider large deformations. Therefore, our pro-
posed framework can generally be applied when an overall
strain-stress assumption is less effective, without changing
the fundamental models in Section 2.1-2.2, such as the
method for constructing the compliance density matrix (see
(2)). The load/actuation is applied incrementally, and even
with a linear material model, the computation is nonlinear
because the system parameters, such as the stiffness matrix
density, are updated based on the previous step’s results. The
three procedures are:

Procedure 1: The actuation is applied in an incremental
way ∆Ω, which is either by predefined n steps or an absolute
threshold value bΩ. Using predefined steps, the incremental
actuation variable ∆Ω can be described by

∆Ω = Ω/n. (12)

Ω is the maximum actuation variable, which could be the
fluidic pressure, fluid volume, or external loads in fluidic-
driven robots. System parameters update in each step and
∆Ω is used in every step instead of Ω. In the threshold
method, ∆Ω equals

∆Ω = {∆Ω(t) : ∥∆Ω(t)∥2 ≤ bΩ}. (13)

Equation (13) denotes that the system parameters update
when the variation of the actuation variable in the 2-norm
is larger than bΩ. ∆Ω(t) is defined as the variation of Ω
after the current update starts, which is reset to zero when
the next update step begins. Equation (12) can be used if
the maximum value of actuation is known, e.g., a step input.
By contrast, (13) is more convenient if the actuation changes
with time, for instance, a ramp or a sine wave input.

Procedure 2: From (1), the increment of the twist at
position i, in the jth step in body frame can be described
by

(∆Tb
i (s))

j = [c(s)bi∆Wb
i (s)]

j . (14)

where, (∆Wb
i )

j is the wrench at the position i in the jth
iteration step. The new deformation twist (∆Tb

i (s))
j (e.g.,

v(s) and u(s) ) can be used to construct the variation of the
system variables ∆yj , to update the new state variables yj

as follows:
yj = yj−1 +∆yj , (15)

where yj is used to model the forward kinematics of robots.
Procedure 3: At the end of the jth step, the compliance

matrix density (2) updates based on the results from the
(j − 1)th step. When the material stretches, the principle
stretches are defined as [λ1, λ2, λ3]. A practical way to
update the compliance matrix is treating the material
as incompressible (λ1λ2λ3 = 1) and undergoing uniaxial
extension. This yields

λ2 = λ3 =
√
1/λ1. (16)

Specifically, when the numerical models including the
PCC-based and Cosserat rod-based compliance models build
on a linear soft material behaviour, we refer to as the linear
Cosserat model (LCM) and linear PCC model (LPCC).
Models considering the nonlinear compensation of the soft
material are referred to as the nonlinear Cosserat model
(NCM) and nonlinear PCC model (NPCC) in this paper.

2.4 Matrix-based stiffness analysis
This proposed method could be used to reveal how stiffness
distributes along the robot. The 6× 6 material compliance or
stiffness matrix has the structure of

C =

[
Cfv Cmv

Cfω Cmω

]
=

[
Kfv Kmv

Kfω Kmω

]−1

= K−1. (17)

The compliance matrix C is symmetrical and consists of four
sub-matrices, where Cfv is the force-translational matrix,
Cmω is the moment-rotational matrix, Cmv, Cfω are the
coupling matrices. The corresponding stiffness matrices are
Kfv , Kmω , Kmv and Kfω .

The compliance matrix C(s)oi derived from (5) or (11) is
written in the global frame {Oo, xo, yo, zo}, which can be
expressed in the body frame {Oi, xi, yi, zi} by

C(s)bi = Adoi(s)
TC(s)oiAdoi(s). (18)

Based on a derived Cartesian compliance matrix, i.e., Co

(or Cb) at the robot tip, the deflected tip configuration god of
a robot undergoing an applied wrench ∆Wo (or ∆Wb ) can
be determined. Assuming the current tip configuration is goc
(defined by (46)), the new configuration can be calculated
from the resulting twists via exponential mapping in (19)

god = e(∆To )̂goc = goce
(∆Tb )̂, (19)

where ∆To = Co∆Wo and ∆Tb = Cb∆Wb. For in-
stance, the defected position is the difference between the
two 3× 1 translation vectors from god and goc .

2.4.1 Stiffness/Compliance ellipsoid. Stiffness ellipsoid
(SE) or compliance ellipsoid (CE) is the projection between
the twist and wrench, where the input twist/wrench is
restricted to a hyper-sphere, and the resultant wrench/twist
will be a hyper-ellipsoid (Gravagne and Walker 2002). The
SE and CE is described by

SE = {δW : δTT δT = 1}, CE = {δT : δWT δW = 1}.
(20)

δW and δT are the infinitesimal change of a wrench
or twist. Equation (20) also means δTT (CCT )−1δT =
1, δWT (KKT )−1δW = 1. For CE, there are six principle
axis vectors βi, (i = 1 . . . 6) with magnitudes 1/

√
γi, (i =

1 . . . 6). βi and γi are the eigenvectors and the eigenvalues
of CCT . The stiffness matrix has the same principle axis
vectors βi with the compliance matrix but with inverse
magnitudes

√
γi. The dimension of a full stiffness or

compliance ellipsoid is ∈ R6×6. A typical way of visualising
the compliance ellipsoids in 3D space is by subtracting the
3× 3 translation and rotation sub-matrices from the 6× 6
compliance matrix (Black et al. 2017; Hussain et al. 2021).
Once the relation between the applied force (or moment) and
resulted displacements in the Cartesian space is obtained,
the ellipsoids provide a visualisation of the compliance
properties.

2.4.2 Eigenscrew decomposition. The ellipsoid is essen-
tially a graphic representation of direct eigenvalue decompo-
sition of the related stiffness or compliance matrix, but this
decomposition is dependent on the choices of coordinates.
To achieve a coordinate-free analysis, eigenscrew decom-
position of (17) can be adopted. The eigenvalue of such
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decomposition is called eigenstiffness and the corresponding
eigenvector is called eigenscrew (Huang and Schimmels
2000). Rewriting (18) in stiffness matrix form and multiply-
ing by the elliptical polar operator ∆ yields

K0∆ = AdobK
bAdTob∆ = AdobK

b∆Ad−1
ob

= Adob(K
b∆)Ad−1

ob ,
(21)

where AdTab∆ = ∆Ad−1
ab . This means that K0∆ and Kb∆

have the same eigenvalues. Thus, K∆ preserves eigenvalues
under coordinate transformations. As such, the eigenscrew
problem is formulated as the eigenvalue decomposition of
(K∆)ζi = ηiζi, (i = 1 . . . 6), where ηi is the eigenstiffness
and ζi is the eigenscrew. η1 ∼ η6 have three positive values
and three negative values.

To describe the configuration-dependent stiffness, the
augmented position quantity pw is proposed as

pw = [x, y, z, τ ], (22)

where pw contains the position and stiffness information.
x, y, z denote the position, and τ is the criteria to describe
the stiffness, e.g., τ can be the derived eigenstiffness η from
the eigenscrew decomposition.

In this way, the frame-invariant eigenscrew decomposition
can be utilised to analyse the stiffness property of the soft
robot. Similarly, the counterpart, eigencompliance decom-
position, can also be obtained (Dai and Ding 2006). For
more information, details of the eigenscrew decomposition
can be found in Huang and Schimmels (2000); Chen et al.
(2015). In summary, the general scheme of the proposed
configuration-dependent stiffness/compliance modelling and
analysis framework is summarised in Figure 1.

3 Case Study: Pneumatic-driven soft robot
3.1 Continuum robot prototype
The soft robot used in this paper follows the large-
scale STIFF-FLOP design, which is devised for minimally
invasive surgery and made of a highly deformable elastomer
with a fluidic-driven principle (Fraś et al. 2015). The robot
has six individually reinforced circular chambers. Braided
in-extensible threads constrain the radial inflation while
allowing longitudinal expansion under pressurisation. In
this way, the pressurisation does not change the shape
and perimeter of all actuation chambers and the strain in
the circumferential direction of the reinforcement layer is
negligible (Polygerinos et al. 2015).

The body of an individual cylindrical segment is
composed of silicone material [Ecoflex 00-50 Supersoft,
SmoothOn] with an overall length of 5.0 cm, and an outer
radius of 1.25 cm. The top and bottom of the robot are sealed
using rubber material [Dragon Skin 30]. A lumen with a
0.44 cm radius is reserved for feeding through a medical
device, such as a camera. The length of the chamber is
4 cm, and its internal radius is 0.225 cm. The adjacent two
chambers are paired together. The three chamber pairs are
evenly located in the periphery of the silicone cylinder with
120◦ interval. Actuating one or two chamber pairs results in
omni-directional bending, while actuating all three chamber
pairs simultaneously generates pure elongation. The detailed
dimensions can be found in Figure 3.
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Figure 3. Parameters of the soft robot. l0, lt and lb is the length of
the chamber, the top and the bottom cap of the manipulator.

.

Following the methodology proposed in Section 2,
the specific implementation on the pneumatic-driven
manipulator is detailed in the following sections. Section 3.2
derives the compliance density and the updates, and
Section 3.3 describes the model implementation.

3.2 Compliance matrix derivation and update

The vector P contains the pressure in six chambers, and P1 =
P2, P3 = P4, P5 = P6 because the adjacent two chambers
are actuated as one chamber pair. kd ∈ R3 is the position
vector of the kth chamber written in the body frame, k =
1 · · · 6, described by

kd = Rz(
kφ)[ro, 0, 0]

T , Rz(
kφ) =

cos kφ − sin kφ 0
sin kφ cos kφ 0

0 0 1

 ,

(23)
where kφ is the angle of the kth chamber related to the
positive direction of the x-axis, which can be calculated by
α1 and α2. α1 is the angle between two chambers in two
adjacent chamber pairs, and α2 is the angle between two
adjacent chambers of the same pair, shown in Figure 3.

In line with (16), the element compliance distribution
c(s)bi can be built on (2) considering the stretch ratio λ1 via



A(s)i = π(
r2m1 − r2m2

λ1
− 6r2P )

I,x|y(s)i =
πr4m1 − πr4m2

4λ2
1

−
6∑

k=1

(
πr4P
4

+
(kd,x|y)

2πr2P
λ1

)

I,z(s)i =
2(πr4m1 − πr4m2)

4λ2
1

− 6(π
r4P
4

+
r2oπr

2
P

λ1
).

(24)
rm1, rm2, rP are the radii of outer, inner manipulator
and pressure chamber, which are shown in Figure 3, the
subscript x|y denotes around the x- or y-axis. The braided
constraint of the chambers can be described as r̃P =
rP

√
1− λ2

1 cos(γ)
2/ sin γ (Sadati et al. 2020). When the

thread is densely braided, γ ≈ π/2, rP could be regarded
as constant. Other radii would follow the updates as shown
in (24).

According to Section 2.3, the system parameters
from (24) in the (j + 1)th step can be updated via
λj
1 derived from the jth step. This can be achieved

by substituting rjm1, r
j
m2, λ

j
1, r

j
o, (

kd)j into (24) to obtain
A(s)j+1

i , I,x|y(s)
j+1
i , I,z(s)

j+1
i .
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The actuation variable Ω here is the pressure P in three
chamber pairs. According to (12) and (13), the predefined-
step method yields

∆Ω = ∆P = [P1/n, P3/n, P5/n]. (25)

The threshold-based method results in

∆Ω = ∆P = [∆P1(t),∆P3(t),∆P5(t)]. (26)

∆Ω is replaced by ∆P in following sections.

3.3 Instantiation of the configuration-dependent
compliance models

The derivation of the compliance matrix (2) and the
corresponding update (24) are the same in the PCC and
Cosserat rod model. In order to derive the forward kinematics
in each step, the actuation wrench needs to be calculated first.
In each iteration, the force vector FP written in the body
frame equals

∑6
k=1 FPk

=
∑6

k=1(PkAP e3), where AP =
πr2P , Pk is the pressure in each chamber, FPk

is the force in
each chamber. The totally moment TP vector written in the
body frame equals

∑6
k=1 TPk

=
∑6

k=1(
kd× FPk

).

3.3.1 PCC-based compliance model. As discussed
in Section 2.2.1, the set of curvature parameters
[κ(s)i, s(s)i, ϕ(s)i] is used to derive the forward kinematics
from the ith to the (i+ 1)th element. The length of arc s(s)i
in each iteration is

s(s)i = (s0(s))i +
FP,z(s0(s))i

EA(s)i
= (λ1)i(s0(s))i, (27)

where s0(s)i is the initial arc length. Curvature κ(s)i yields

κ(s)i =
√

κ,x(s)2i + κ,y(s)2i ,

κ,x(s)i =
TP,x

EI,x(s)i
, κ,y(s)i =

TP,y

EI,y(s)i
.

(28)

TP,x and TP,y are the components of moments in the x- and
y-axis. The angle ϕ(s)i is calculated by

ϕ(s)i = −atan2(κ,x(s)i, κ,y(s)i). (29)

Substituting (27)-(29) to (6)-(5), the PCC-based compli-
ance model in one iteration (i.e., the LPCC model) can be
realised.

Update principle: Equations (27)-(29) are within one
iteration, where the iteration number j is dropped. To update
the parameters, the arc parameters in the (j + 1)th step can
be treated as the superposition on the jth step according
to (15). The initial value of the arc length is updated
as s(s)j+1

i = (λ1)
j+1
i s(s)ji . Specially, updates of the arc

parameters [κ(s)j+1
i , s(s)j+1

i , ϕ(s)j+1
i ] from the jth step to

the (j + 1)th step are detailed as

s(s)j+1
i = s(s)ji +

F j+1
∆P s(s)ji

EA(s)j+1
i

,

κ,x(s)
j+1
i = κ,x(s)

j
i +

T j+1
∆P,x

EI,x(s)
j+1
i

,

κ,y(s)
j+1
i = κ,y(s)

j
i +

T j+1
∆P,y

EI,y(s)
j+1
i

,

ϕ(s)j+1
i = −atan2(κ,x(s)

j+1
i , κ,y(s)

j+1
i ).

(30)

∆P is the discretised actuation value from (25) or (26). The
stretch ratio λ1 in the jth step can be derived and substituted
into (24) to update the system parameters. This allows the
compliance matrix to be updated in each step.

3.3.2 Cosserat rod-based compliance model. Considering
the gravitational force fg(s)i = ρA(s)ig, the force equilib-
rium in a discretised element σ at the position i is∫ (i+1)σ

iσ

fe(iσ)idσ + ni+1(iσ + σ)− ni(iσ)−

6∑
k=1

{PkAP [Ro(i+1)(iσ + σ)−Roi(iσ)]e3} = 0,

(31)

where σ is the discretised length of the arc. The first
order Taylor expansion yields ni+1(iσ + σ) = ni(iσ) +
ni(iσ)sdσ and Ro(i+1)(iσ + σ) = Roi(iσ) +Roi(iσ)sdσ.
Equation (31) can then be differentiated with σ and replacing
iσ with the arc parameter s, which yields

ni(s)s = −fe(s)i +

6∑
k=1

[PkAPRoi(s)se3]

= −fg(s)i + fP (s)i,

(32)

fe(s)i is the distributed external force and equals to
fg(s)i here, and fP (s)i is the distributed force resulting
from pressurisation. Similarly, the moment balance can be
described in (33).

Similar to (32), (33) can be differentiated with σ resulting
in

mi(s)s = −le(s)i − p̂oi(s)sn(s)i +AP

6∑
k=1

Pk·

Roi(s)[(v(s)
b
i + u(s)bi × kd)× e3 +

kd̂(û(s)bie3))]

= −le(s)i − p̂oi(s)sni(s) + lP (s)i.

(34)

The external distributed moment le(s)i is equal to zero
and lP (s)i is the distributed moment resulting from the
pressurisation.

The wrench at the chamber end is balanced by the internal
integrated loading [n(l),m(l)], and the exerted external
wrench [ne(l),me(l)] including the exerted load and the
weight of the tip appendage, which includes the sensor and
plastic sealing plate, with a total weight of 8 g in this
prototype. The boundary conditions can be described by

n(l) = ne(l) +Rot(l)

6∑
k=1

APPke3,

m(l) = me(l) +Rot(l)

6∑
k=1

kdAPPke3,

(35)

where Rot(l) is the rotation matrix at the tip position. In
summary, the whole set of ODEs is

poi(s)s = Roi(s)v(s)
b
i

Roi(s)s = Roi(s)û(s)
b
i

ni(s)s = −fg(s)i + fP (s)i

mi(s)s = −p̂oi(s)ni(s) + lP (s)i

[C(s)oi ]s = Ad−T
oi (s)c(s)biAd−1

oi (s).

(36)

Prepared using sagej.cls
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Figure 4. Implementation scheme of the nonlinear Cosserat method under large elongation. The grey block means it only executes once.
The inner loop is to solve the boundary value problem of the set of ODEs in (36). And the outer loop is to deal with the hyper-elasticity
resulting from the large elongation and update parameters. The implementation logic is the same for the nonlinear PCC model, by replacing
the inner loop (blue rectangle) by the PCC model derived in Section 3.3.1.

mi+1(iσ + σ)−mi(iσ) + po(i+1)(iσ + σ)× ni+1(iσ + σ)− poi(iσ)× ni(iσ) +

∫ iσ+σ

iσ

[le(iσ)i + poi(iσ)× fe(iσ)i]dσ

−AP

6∑
k=1

Pk[po(i+1)(iσ + σ) +Ro(i+1)(iσ + σ)kd]× [Ro(i+1)(iσ + σ)e3]− [poi(iσ) +Roi(iσ)
kd]× [Roi(iσ)e3] = 0.

(33)

The problem can be solved by (36) with boundary condition
(35) (Till et al. 2019). In this paper, (36) is solved using
the Fourth-order Runge-Kutta Matlab solver. In this way, the
orthonormality of the rotation matrix is maintained during
the numerical integration (details are reported in Appendix
D). The shooting method is implemented via the embedded
optimisation Matlab solver, fsolve(), with the Levenberg-
Marquardt method.

Update principle: The curvature [u(s)bi ]
j and strain

[v(s)bi ]
j superposes upon the previous value [u(s)bi ]

j−1 and
[v(s)bi ]

j−1, so (15) is implemented and updated by

[v(s)bi ]
j = [cse(s)

b
iR

T
oi(s)ni(s)]

j + e3,

[u(s)bi ]
j = [cbt(s)

b
iR

T
oi(s)mi(s)]

j + [u(s)bi ]
j−1,

(37)

with the integration length λj
1 updated in each step. Finally,

the gravitational force fg is treated as an individual external
load on the effect of pressurisation. In this case, fg is
considered in the last step. The overall implementation
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Figure 5. Illustration of a robot with two connected segments in
series. The dimensions of each segment are listed in Figure 3. The
length/thickness of the connection part lk is 6 mm. The chamber
pressures of the second segment are denoted from P7 to P12.

procedure of the nonlinear Cosserat model is summarised in
Figure 4.

Modelling a robot made of two segments: For a soft
manipulator made of two robotic segments (see Figure 5),
our compliance modelling approach will need to consider
intermediate conditions. For the second segment, (31) - (37)
can be applied by replacing P1 ∼ P6 with P7 ∼ P12. The
connection link is considered as rigid. Firstly, the kinematic
continuity between the connection link and two segments
(i.e., when s = l1 and s = l1 + lk) need to be satisfied. which
yields (38).

pol1(l
−
1 ) = pol1(l

+
1 ), Rol1(l

−
1 ) = Rol1(l

+
1 ),

po(l1+lk)((l1 + lk)
−) = po(l1+lk)((l1 + lk)

+),

Ro(l1+lk)((l1 + lk)
−) = Ro(l1+lk)((l1 + lk)

+).

(38)

where l1 and l2 are the backbone lengths for the first and
second robotic segment, respectively. The superscripts − and
+ denote the left and right limits (see Figure 5). In addition,
the force and moment conditions between the link the two
segments are presented in (39).

nl1(l
−
1 ) =Rol1(l

−
1 )FP + nl1(l

+
1 ), Pk ∈ [P1, P6],

ml1(l
−
1 ) =Rol1(l

−
1 )TP +ml1(l

+
1 ), Pk ∈ [P1, P6],

n(l1+lk)((l1 + lk)
−) =n(l1+lk)((l1 + lk)

+)

−Ro(l1+lk)(l1 + lk)FP , Pk ∈ [P7, P12],

m(l1+lk)((l1 + lk)
−) =m(l1+lk)((l1 + lk)

+)

−Ro(l1+lk)(l1 + lk)TP , Pk ∈ [P7, P12],
(39)

where FP and TP are the summed force and moment
generated from the actuation pressure and written in the
body frame (see Section 3.3). The boundary conditions at
the tip of the second robotic segment are the same as in
(35), with Pk ∈ [P7, P12] and s = l1 + lk + l2. The resulting
ODEs can be solved using the shooting method.

Prepared using sagej.cls
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4 Simulation results of the forward
kinematics and compliance/stiffness
modelling

In this section, computational results are presented based on
the established models in Section 3. Simulation 1 presents
a comparison of the four forward kinematics models: the
linear Cosserat model (LCM), linear PCC model (LPCC),
nonlinear Cosserat model (NCM) and nonlinear PCC model
(NPCC), and investigates the derived results of the 6× 6
compliance matrix. The discretised element number in the
PCC and Cosserat rod models is chosen as 50 for the
interest of compliance integration. Simulation 2 analyses
the compliance using the compliance ellipsoid. Simulation
3 presents the configuration-dependent stiffness by the
eigenscrew decomposition. In the simulations, the gravity
direction is along the −z-axis. In the following sections, we
use the terminologies in-plane and out-of-plane bending to
denote when the backbone of manipulators bends within a
single plane and through different planes, respectively.
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Figure 6. Results of Simulation 1 - The bending comparison of
the four models when (a) P1 = P2 and (b) P3 = P4 = P5 = P6,
with the maximum pressure of 1.5 bar. The soft robotic manipulator
bends in the x-z plane.

4.1 Simulation 1 - Model implementation and
comparison

The first set of simulations compares the LPCC, NPCC,
LCM and NCM models. Pressure inputs were in the range
of 0 ∼ 1.5 bar, resulting in the manipulator to bend towards
the −x (P1 = P2) or +x (P3 = P4 = P5 = P6) direction.
The simulated results when P1 = P2 are illustrated in
Figure 6(a), showing that the four models have different
kinematic responses. In general, the differences are less for
low pressure values (e.g., 0.6 bar). Figure 6(b) reports on the
results when two chamber pairs are actuated simultaneously,
showing that all four models return similar output when
the pressure values are less than 0.3 bar. The NCM and
NPCC models have larger bending motions compared to the
LCM and LPCC, in particular, when the pressure reaches
1.5 bar. This implies that the consideration of the cross-
sectional deformation has a significant influence on the
forward kinematics calculations. When comparing the PCC
and Cosserat models, it is observed that the Cosserat models
result in larger bending angles.

The second set of computational experiments investigates
the compliance model when P1 = P2 = 1.5 bar (ϕ = 0◦)
and P1 = P2 = P3 = P4 = 1.2 bar (ϕ = 240◦). The applied
external forces ∆fx|y|z along three main axes ranged
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Figure 8. Results of Simulation 2 - The visualisation of the compliance ellipsoids (scaled by a factor of 0.2) with regards to different
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maximum and minimum eigenvalues of the compliance matrices are reported with the magnitude of the actuation pressure.

between 0.1 ∼ 0.5 N. By integrating the conventional
Cosserat rod model (Till et al. 2019) based on the boundary
conditions (35), the robot configuration under external forces
can be returned. By solving (36) assuming the external force
are zero, the configuration-dependent compliance matrix Co

can be derived first, the configuration subject to external
forces can then be obtained from (19) using Co, and
the tip wrench ∆W = [∆fT

x|y|z, (p(l)×∆fx|y|z)
T ]T . The

differences of the Cartesian tip position ∆E from two
methods are compared using (40).

∆E =
√

(xcm − xecm)2 + (ycm − yecm)2 + (zcm − zecm)2.
(40)

x|y|zcm are tip positions from solving the Cosserat model,
and x|y|zecm are calculated tip positions yielding from
the compliance matrix. Figure 7(a) and (b) show the
comparisons of the tip poses under applied forces from
direct solving the Cosserat rod model (coloured in black)
and from compliance matrix (the red stars). The extracted
tip differences ∆Ex|y|z are shown in Figures 7(c) and (d). It
is observed that the differences of the tip position are below
0.15 cm for both in-plane bending cases where ϕ = 0◦ and
ϕ = 240◦.

Remark 1. The differences between the nonlinear and
linear models become non-negligible especially under high
pressure level (see Figure 6(b)). In nonlinear models, high
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Figure 10. Results of Simulation 3 - Analysis of stiffness at the
tip position based on the eigenscrew decomposition. The maximum
and minimum positive eigenstiffness values are extracted and
then interpolated using natural method from Matlab to assess the
configuration-dependent stiffness, which are displayed from the
left to the right side in (b), (c), (d). The maximum pressure in
each chamber was 1.0 bar. (a) Demonstration of pw. The colorbar
illustrates the eigenstiffness attached to the points of workspace.
(b) The stiffness projection onto the x-y plane. (c) The stiffness
projection onto the y-z plane. (d) The stiffness projection onto the
z-x plane.

pressure inputs are applied in predefined steps following
(25) or (26). Similarly, high external forces can be
applied incrementally using the compensation procedures
reported in Section 2.3. For Simulation 1, the tip deflection
displacements are calculated for small external forces
(e.g., below 0.5 N) using two approaches: (1) solving
the conventional Cosserat rod model satisfying boundary
conditions and (2) calculating the deformed twists from
the derived compliance matrix. For in-plane bending
with different values of ϕ, both approaches yield similar
results. This preliminarily shows the integrated Cartesian
compliance matrices are applicable for predicting the
deflection displacement under external forces.

4.2 Simulation 2 - Compliance ellipsoid
In line with Section 2.4, the compliance ellipsoid is then
adopted to achieve the model-based compliance/stiffness

analysis. The nonlinear Cosserat rod model is used in
this section. Two sets of simulations were conducted
to investigate the compliance distribution along the
manipulators under different configurations. The simulation
setting is as follows:

• Bending and elongation for a robotic manipulator: For
the bending simulation, values for P1 and P2 ranged
between 0 ∼ 1.5 bar. For the elongation simulation,
all chambers were pressurised simultaneously from
0 ∼ 0.9 bar. The difference of pressure values in the
two scenarios results in elongation ratios of a similar
level.

• Bending for a manipulator made of two robotic
segments: In the first simulation, P1, P2, P7, and P8

were actuated together. In the second simulation, P1,
P2, P9, P10, P11, and P12 were actuated. In both
simulations, the pressure was between 0 ∼ 1.2 bar.

Figure 8(a) presents the visualisation of the compliance
ellipsoids at 0.5l, 0.6l, 0.7l, 0.8l, l along the manipulator
when one chamber pair is actuated. The figure indicates that
the compliance monotonically increases from the middle to
the tip position, from a lower to a higher pressure. This
finding can be quantitatively verified from the extracted
minimum and maximum eigenvalues of the compliance
matrices. For instance, when the pressure increases from
0 to 1.5 bar, the minimum eigenvalues at the middle and
tip position increments from 0.06 to 0.11 and 0.13 to
0.36, respectively. Similarly, the corresponding maximum
eigenvalues increases from 0.40 to 0.72 and 1.84 to 3.60.
Similar findings can be observed from Figure 8(b), i.e.,
the compliance increases under a higher pressure and at a
closer distance to the robot tip. Compared to Figure 8(a),
Figure 8(b) illustrates the robot becomes more compliant for
large bending motions. In particular, the overall maximum
and minimum eigenvalues in Figure 8(b) are about 2 ∼ 3
times higher than the values in Figure 8(a). Figure 8(c) shows
the results from the elongation scenario. As occurred in the
bending test, it is also observed that the overall compliance
increases under high pressurisation. When all the chambers
are pressurised to 0.9 bar, the maximum eigenvalue at the
tip position reaches 9.34 and increases about five times,
compared with the value as 1.84 when the pressure is zero.

For a manipulator consisting of two robotic segments,
the first and second segments are coloured in blue and
red, with a 6 mm thick connection part. Figure 9(a) shows
the results when P1 = P2 = P7 = P8. It indicates that the
maximum and minimum eigenvalues at the tips of both
robots increase (e.g., the maximum values increase between
90% ∼ 100%) with increasing pressure, which indicates an
overall increase in compliance. The maximum eigenvalues
from the tip of the second robot are about 6 ∼ 8 times larger
than the values from the tip of the first robot. The eigenvalues
also demonstrate that the compliance of the second robot
has a greater variation compared to the compliance of the
first robot. Figure 9(b) reports the results when P1 = P2 =
P9 = P10 = P11 = P12 with similar conclusions, i.e., the tip
compliance of the second robot is about 6 ∼ 8 times larger
than the tip compliance from the first robot. Compared to
Figure 9(a), the minimum eigenvalues from Figure 9(b) show
a smaller variation.
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Figure 11. Experimental setup. It comprises two subsystems: (a) The hardware for power and actuation mainly contains the air compressor
and electronics, such as pressure regulators, PWM converter (denoted using DAC here) and NI USB-6341 boards, to actuate and control
the soft robotic manipulator. A laptop running Matlab software collects data and sends control commands. (b) The forward kinematics and
stiffness validation setup contains a 7 DoF Franka Emika Panda robot with the soft robotic manipulator mounted on the end-effector, NDI
Aurora magnetic trackers, a 6 DoF force/torque sensor, and a linear rail.

Remark 2. Simulation 2 shows that the distribution of the
compliance along the manipulator can be derived based on
the forward kinematics models using our proposed method.
This is fundamentally different from, e.g., the Jacobian
projection (Hussain et al. 2021) or using derivatives (Rucker
et al. 2011). In particular, (36) describes how the compliance
matrices can be integrated with the static Cosserat rod
models simultaneously.

4.3 Simulation 3 - Eigenscrew decomposition
To analyse the coordinate-independent stiffness, the eigen-
screw decomposition can be derived based on Section 2.4.2.
In the simulation, the pressure was in the range of 0 ∼ 1 bar
and implemented using the nonlinear Cosserat Rod model.
Figure 10(a) shows the distribution of pw, where τ is the
maximum positive eigenstiffness. It can be observed the
workspace is dome-shaped and enlarged by the elongation.
The overall eigenstiffness decreases from 4.37 to 1.49.

Figures 10(b)-(d) show that both maximum and minimum
eigenstiffness values are projected onto the x-y, y-z, and z-x
planes. Figure 10(b) shows the stiffness decreases from the
centre to the periphery of the workspace. For example, the
eigenstiffness value is 4.37 at the centre, but that value is 1.93
at the vertex. Figures 10(c) and (d) convey the same message
that the stiffness projected onto the y-z plane and z-x plane
also decreases when the workspace becomes larger. Please
note that only the enclosed area by the red dotted points
shown in Figures 10(b)-(d) are the reachable workspace.

Remark 3. Simulation 3 shows that the stiffness of the
manipulator varies in the workspace, and the stiffness
capability, described by eigenstiffness (independent from the
coordinates), decreases under a high pressure level. Large
axial elongation makes the robotic manipulator have more
compliant responses. This will be further investigated and
validated in Section 5.3.

5 Experimental validation of the forward
kinematics and stiffness model

In this section, thorough validation procedures of the
proposed method and its results are presented comparing
our numerical models (LCM, NCM, LPCC and NPCC)
from Section 3.3 with experimental data in Experiments 1-
3. Experiments 1-2 use a manipulator made of one segment
for validation. Experiment 1 reveals the nonlinear kinematic
responses are observed and accommodated. Experiment 2
validates the configuration-dependent stiffness/compliance
model. Experiment 3 validates the configuration-dependent
compliance modelling using manipulators made of one and
two robotic segments.

5.1 Experimental setup
The experimental setup is presented in Figure 11. As
shown in Figure 11(a), three proportional pressure regulators
(Camozzi K8P) are used to modulate pressurised air in
each chamber pair. These are controlled by analogue signals
(0 ∼ 10V) with a pressure feedback channel (0 ∼ 3 bar). A
compressor (BAMBI MD Range Model 150/500) is chosen
as the pneumatic reservoir supplying constant pressurised
air to the pressure regulators. NI-DAQ USB-6341 devices
with multiple digital and analogue I/Os are used to monitor
and control the pressure regulators. The NI-DAQ USB-6341
provides PWM signals, which are converted to analogue
signals (0 ∼ 10 V) by Pulse-Width Modulation (PWM)
converters, to control each pressure regulator. In Experiment
3, another three pressure regulators are added and controlled
in the same way.

Figure 11(b) shows a 6 Degree-of-Freedom (DoF) Aurora
sensor mounted on the tip of the soft robotic manipulator
to measure its pose using an NDI Aurora tracking system.
The position and orientation tracking errors of the Aurora
system (with 6 DoF sensors and a cube volume) are less
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than 0.48mm and 0.30◦, respectively. Stiffness experiments
were conducted by pulling the manipulator’s tip via a
0.19mm diameter nickel wire connected to a IIT-FT17 6
DoF Force/Torque (F/T) sensor. The F/T sensor was mounted
on a motorised linear rail (Zaber X-LSM100A), which
controlled the pulling speed and displacement. A 1.5m
length wire was chosen to guarantee a high confidence in
the angle of the applied pulling force. For instance, when
∆fx is applied along the x-axis, a 1 cm displacement error
in the z-axis would result in an angular error of about
arctan 0.01

1.5 = 0.38◦, which is negligible. For the stiffness
validation experiments, the soft manipulator was fixed to
a 7 DoF robotic arm (Franka Emika Panda) to arrange
the desired pose and measure the configuration-dependent
stiffness. All hardware was connected to a laptop running
Matlab software to capture data, control the soft robot and
the 7 DoF robotic arm, and post-process the acquired data.

5.2 Experiment 1 - Validation of the forward
kinematics and nonlinear compensation

To validate the forward kinematics and the nonlinearity,
three sets of experiments were conducted by pressurising
one, two and three chamber pair(s) simultaneously. When
one chamber pair was pressurised, the pressure was from 0
to 1.5 bar and followed the sequence: (P3, P4 → P5, P6 →
P1, P2). When two chamber pairs were pressurised,
the pressure was from 0 to 1.2 bar and followed
(P1, P2, P3, P4 → P3, P4, P5, P6 → P1, P2, P5, P6). When
three chamber pairs were actuated, the pressure in
all six chambers was from 0 ∼ 1.2 bar and increased
simultaneously. During these experiments, the tip position of
the soft manipulator and chamber pressures were recorded
at 40 Hz. The maximum pressure values in both bending
experiments were set differently, so the maximum bending
angle reached the same value in both experiments. The
pressure was incrementally increased by 0.15 bar. In the
simulation, the threshold-based method was chosen to
discretise the pressure with a threshold value of 0.15 bar,
when one chamber pair was pressurised according to (26).
The finite-step method was chosen with n = 6, when two
chamber pairs were pressurised based on (25).

Figure 12 illustrates extracted static elongation and
bending angles. The experimental data are plotted in blue
circles and linearly interpolated by curve fitting (see blue
curve). The LCM, NCM, LPCC and NPCC are plotted in
green, magenta, dotted black, and dotted red, respectively. In
addition, the elongation ratio is displayed at the bottom of
Figures 12(a)-(c), derived by computing the change of the
length of the backbone of the manipulator over the default
length. Proportionality constants are 0.4 cm, 52.5◦ and 30.0◦

per 0.1 of the elongation ratio in Figures (a), (b) and (c),
respectively. Figures 12(b) and (c) report the elongation
ratios for the purpose of illustrating the level of elongation
when the robot has a bending motion. From Figure 12(a),
it can be seen that the manipulator achieves a maximum
elongation of 2.7 cm. The results of all numerical models
and experiments are similar for pressures up to 0.45 bar and
an elongation ratio of 0.15. Above these values, the curves
of the LCM and LPCC behave in a linear way compared
to the two nonlinear models and experiments. The overall
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Elongation ratios when the robot bends or elongates

Figure 12. Results of Experiment 1 - nonlinear kinematic
responses: Experiments are compared to results from (non)linear
models. Applied pressures are plotted against (a) elongation
displacement and elongation ratios when all chamber pairs are
actuated, and angles and elongation ratios when (b) one chamber
pair and (c) two chamber pairs are pressurised. The orange stars
demonstrate the level of elongation when any nonlinearity becomes
significant. (a) reports the elongation ratios from experiments; (b)
and (c) report the ratios from the NCM. Comparisons are reported
on in Extension 1.

Root Mean Square Error (RMSE) of two nonlinear models
is 0.07 cm, while the RMSE of two linear models is 0.49 cm
(see Table 3).
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Table 3. Summary of results for Experiment 1: Comparison of errors for the linear and nonlinear simulation models with experiments.

Pressurisation Model Max. Min. RMSE Pressurisation Max. Min. RMSE Pressurisation Max. Min. RMSE
[cm] [cm] [cm] [◦] [◦] [◦] [◦] [◦] [◦]

Elongation
Figure 12(a)

LPCC 1.06 0.05 0.49
Bending

Figure 12(b)

28.38 0.74 12.45
Bending

Figure 12(c)

38.20 0.19 16.36
LCM 1.06 0.05 0.49 24.10 1.24 10.38 33.45 1.68 14.10
NPCC 0.13 0.03 0.07 12.70 0.42 5.91 11.90 0.85 5.61
NCM 0.13 0.03 0.07 5.43 1.10 3.79 6.62 1.58 4.28

In Figures 12(b) and (c), the maximum bending angles
are similar and around 110◦. The maximum elongation
ratio is about 0.2 and 0.4 when one and two chamber
pairs are pressurised. The nonlinearity is notable when the
elongation ratio is larger than 0.1. The nonlinear models
outperform linear model sets. For example, the NCM shows
the smallest RMSE in two bending scenarios, which are
3.79◦ and 4.28◦. By comparison, the linear models are less
accurate. Specifically, the LCM, with the RMSE of 10.38◦

and 14.10◦. Moreover, the Cosserat rod models show a better
performance that the PCC models. A detailed summary of
the errors is shown in Table 3.

Figure 13 shows the results for the forward kinematics
validation, with detailed summary of errors in Table 4.
The top row plots of Figure 13 show the triangular-shaped
pressurisation pattern of the chamber pairs followed by
corresponding position measurements. The bottom two rows
plot the positional error for the (non)linear Cosserat rod and
PCC models compared to the experimental results in the x-,
y-, and z-directions.

Figure 13(a) shows the forward kinematics results when
one chamber pair is pressurised with different amplitudes.
During 2.5 ∼ 12 s, the errors of the linear and nonlinear
models are similar for this value of pressurisation. During
15.5 ∼ 25 s, the amplitude is set to 1.2 bar, resulting in
an increase of the error values for two linear models. The
maximum error reaches 0.76 cm for the LCM and 0.91 cm
for the LPCC. This error further increases during 28.5 ∼
38 s, when the maximum pressure is 1.5 bar. In this instance,
the maximum error in the x-axis is 1.03 cm for the NPCC
and 0.64 cm for the NCM. This error is larger for the linear
models (1.26 cm for the LPCC and 1.09 cm for the LCM).

Figure 13(b) shows the results when two chamber pairs
are pressurised. Similar to Figure 13(a), the error values of
the four linear and nonlinear models are almost identical
and below 0.5 cm, when the pressure inside each of the
two chamber pairs is below 0.6 bar during 2.5 ∼ 12 s.
The discrepancy between the linear and nonlinear models
again becomes larger with the increase of the pressure.
For instance, when the pressure is increased to 1.2 bar, the
maximum errors in the x-, y-, and z-directions for the LCM
are 0.64, 1.07, 1.74 cm. Conversely, the errors of the NCM
are 0.47, 0.43, 0.70 cm in three directions. Overall, the NCM
returns the highest accuracy with an RMSE value below
0.24 cm compared to RMSE values of 0.46, 0.51, 0.58 cm
for the LCM, NPCC, and LPCC (see Table 4).

5.3 Experiment 2 - Validation of the stiffness
and compliance for a one robotic segment

Two types of experiments are used to validate the compli-
ance/stiffness modelling. The translational compliance ma-
trix Co

t is validated. The experimental compliance (Co
t )e is

obtained by

(Co
t )e =


∆x∆fx

∆fx

∆x∆fy

∆fy

∆x∆fz

∆fz
∆y∆fx

∆fx

∆y∆fy

∆fy

∆y∆fz

∆fz
∆z∆fx

∆fx

∆z∆fy

∆fy

∆z∆fz

∆fz

 =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 ,

(41)
where ∆f = (∆fx,∆fy,∆fz) is the pulling force along
the x-, y-, and z-axes and measured by the sensor. The
corresponding displacements were recorded by the Aurora
system. For instance, ∆x∆fx is the displacement along the
x-axis resulting from ∆fx. The experimental compliance
matrix can then be derived column by column, as shown
in (41). During all experiments, the pulling displacement
values were set to 0.25 cm, 0.3 cm, 0.35 cm, 0.4 cm,
respectively, with a pulling speed of 0.02 cm

s .
For planar stiffness validation (Shiva et al. 2016; Ranzani

et al. 2016), the manipulator had planar motions, within
x-z plane. The stiffness along the x-, y- and z-axes was
investigated. When the manipulator bent to -x-axis, the
pressure of P1 and P2 was in the range of 0 ∼ 1.5 bar.
When the manipulator bent to +x-axis, the pressure of
P3, P4, P5, and P6 was in the range of 0 ∼ 1.2 bar.
For Cartesian compliance validation, the 3× 3 compliance
matrix Co

t was validated under six different configurations,
where the experiments were conducted pressurising one,
two and three chamber pairs in the range of 0 ∼ 1.2 bar.
The compliance was investigated when the robot bends with
different values of ϕ. Extension 2 reports on the details of
this experiment.

Figure 14(a) shows the stiffness response in three
directions (i.e., x-, y-, and z-axes) with one chamber
pair pressurised. As the bending angle increases due to
pressurisation up to about 0.9 bar, the experimentally
acquired stiffness values along the x-axis decreases first and
then reaches a bending angle of about 90◦ with a maximum
stiffness of 1.21± 0.17 N

cm . The four models return different
error values when compared with the experimental results.
The errors between all models and the experimental data are
within 0.10 N

cm when the pressure is less than 0.6 bar. When
the pressure further increases to 1.5 bar, the error is 0.28±
0.17 N

cm for the NCM, 0.05± 0.17 N
cm for the LCM, 0.47±

0.17 N
cm for the NPCC, and 0.42± 0.17 N

cm for the LPCC.
By contrast, the overall stiffness monotonically decreases in
the y-direction , from 0.57± 0.04 N

cm to 0.27± 0.02 N
cm . The

error values of the two nonlinear models are within 0.05 N
cm .

The error is larger than 0.10 N
cm for the linear models. The

overall stiffness also decreases in the z-axis, from 7.33±
0.33 N

cm to 0.42± 0.03 N
cm .

Figure 14(b) shows the results when two chamber pairs
are pressurised. The stiffness response in all directions
follows a similar pattern. However, all stiffness values are
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Figure 13. Results of Experiment 1 - Forward kinematics validation: (a) One chamber pair actuation with pressure amplitudes of
0.9, 1.2, and 1.5 bar. (b) Two chamber pairs actuation with pressure amplitudes of 0.6, 0.9, and 1.2 bar. xexp, yexp, and zexp are the
experiment positions. xsim, ysim, and zsim are the simulation results for the nonlinear Cosserat model. LCMex , LCMey , and LCMez

are errors from the linear Cosserat model. NCMex , NCMey , and NCMez are errors from the nonlinear Cosserat model.
LPCCex , LPCCey , and LPCCez are errors from the linear PCC model. NPCCex , NPCCey , and NPCCez are errors from the
nonlinear PCC model. The comparisons are also reported in the Extension 1.

lower. For example, the stiffness value in the y-direction
is 0.27± 0.02 N

cm in Figure 14(a); this value is about two
times lower (0.12± 0.01 N

cm ) in Figure 14(b). As mentioned
earlier, the pressurisation of one chamber pair with 1.5 bar
and two chamber pairs with 1.2 bar each achieve a bending
angle of approximately 90◦. In line with previous results,

Table 4. Summary of results for Experiment 2: Tip position errors.

Model |ex| |ey | |ez | rex rey rez
[cm] [cm] [cm] [cm] [cm] [cm]

Figure 13(a):
One chamber

pair

LPCC 1.27 0.35 0.92 0.35 0.14 0.27
LCM 1.10 0.41 0.77 0.31 0.15 0.23
NPCC 1.03 0.38 0.77 0.30 0.15 0.22
NCM 0.64 0.39 0.62 0.24 0.20 0.21

Figure 13(b):
Two chamber

pairs

LPCC 0.74 1.27 1.99 0.28 0.39 0.58
LCM 0.64 1.07 1.74 0.23 0.32 0.51
NPCC 0.62 0.89 1.57 0.20 0.29 0.46
NCM 0.48 0.43 0.70 0.18 0.17 0.24

* rex is the RMSE error in the x-axis, rey in the y-axis, rez in
the z-axis. |ex|, |ey |, |ez | are the maximum absolute errors in the
corresponding directions.

the modelling errors of the linear models increase with the
pressure. For instance, at a bending angle of about 90◦, the
maximum stiffness error along the y-axis is 0.08± 0.02 N

cm

when one chamber pair was pressurised and 0.16± 0.01 N
cm

when two chamber pairs are actuated.
To quantitatively assess the accuracy, the Frobenius norm

is utilised, and the error eC in (42) is defined as the
difference of the Frobenius norm between the simulated and
experimental compliance.

eC =

∣∣∣∣ ||(Co
t )e||F − ||Co

t ||F
||(Co

t )e||F

∣∣∣∣× 100%. (42)

Table 5 gives a summary of the results for the spatial
compliance validation. Here, the first column presents the
actuation pressure. For each of the actuation patterns,
average values of the nine compliance elements derived
from (41) are displayed from the third to eleventh column.
The Frobenius norm and the error defined by (42) are
shown in the last two columns. Table 5 shows that the
overall compliance is configuration-dependent and decreases
with the pressurisation, e.g., the Frobenius norm of the
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Figure 14. Results of Experiment 2 - Planar stiffness along the x-, y-, and z-axes. (a) Stiffness response when P1 and P2 are actuated
and between 0 ∼ 1.5 bar. (b) Stiffness response when P3, P4, P5, and P6 are actuated and between 0 ∼ 1.2 bar. The experimental data
points are plotted using blue circles. Stiffness is calculated from the measured displacement and force data. The shaded areas in orange
colour span from the minimum to maximum stiffness values. The computational results from our models are plotted in a solid pink, green
as well as dotted red and black coloured curve.

experimental compliance matrix is 3.38 cm/N when the
pressure P is [0.6, 0.6, 0, 0, 0, 0] bar (see row 1), but
that value increases to 12.57 cm/N when the pressure is
[0.9, 0.9, 0.9, 0.9, 0.9, 0.9] bar (see row 6). Furthermore, the
accuracy of the linear models decreases with the pressure.
For instance, when P = [0.6, 0.6, 0, 0, 0, 0] bar, the four
models return a similar performance, with the error as
4.07%, 8.68%, 4.07%, 7.76% for NCM, LCM, NPCC, and
LPCC models, respectively. When the pressure increases to
P = [0.9, 0.9, 0.9, 0.9, 0.9, 0.9] bar, the corresponding errors
are 5.16%, 58.80%, 5.90%, 58.40%. Although the maximum
errors of the nonlinear models in Table 5 are larger than 58%,
the maximum errors of the nonlinear PCC and the nonlinear
Cosserat rod model are below 10% and 15%, respectively.

Furthermore, the compliance ellipsoids when P =
[0.9, 0.9, 0.9, 0.9, 0, 0] bar are projected in Figure 15.
Each row, from left to right, shows the ellipsoids’
projection onto the x-y, y-z, and x-z planes for ∆f =
[0.5 cos θ, 0.5 sin θ, 0] N, ∆f = [0, 0.5 cos θ, 0.5 sin θ] N,
and ∆f = [0.5 cos θ, 0, 0.5 sin θ] N in Figures 15(a)-(c),
respectively. The results demonstrate that both linear models
and both nonlinear models return a similar performance. The
size of the major and minor axes of the compliance ellipsoids
from the two linear models return large errors.

5.4 Experiment 3 - Validation of the compliance
for a robot made of two robotic segments

The results of Experiment 3 validate our approach for
a manipulator made of two robotic segments, where the
robot can generate out-of-plane bending. As reported in
Experiments 1-2, the NCM method provides the most
accurate forward kinematics and compliance modelling.
Therefore, we selected the NCM method for validation
in this section. During the experiments, the two robotic

segments were actuated achieving six configurations with
actuation pressures ranging from 0.6 to 1.2 bar. Similar to
Experiment 2, the overall tip compliance was experimentally
determined using (41). The pulling forces ∆f were applied
using calibrated 1 g and 2 g weights, and the corresponding
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Figure 15. Results of Experiment 2 - Ellipsoid visualisation of
the compliance matrices. NCM, LCM, NPCC, LPCC represent
the simulated compliance from the nonlinear Cosserat, linear
Cosserat, nonlinear PCC and linear PCC model, separately. The
compliance ellipsoid is shown for P = [0.9, 0.9, 0.9, 0.9, 0, 0] bar
and projected onto the x-y, y-z, and x-z plane from the left to
the right column for (a) ∆f = [0.5 cos θ, 0.5 sin θ, 0] N, (b) ∆f =
[0, 0.5 cos θ, 0.5 sin θ] N and (c) ∆f = [0.5 cos θ, 0, 0.5 sin θ] N,
with θ = 0 ∼ 2π.
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Table 5. Summary of the results for the validation of spatial compliance in Experiment 2 using a one-segment robot.

Setup Model c11 c21 c31 c12 c22 c32 c13 c23 c33 || · ||F Error (%)
[cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N]

P = 0.6[1, 1, 0, 0, 0, 0] bar

Experiment 2.28 0.15 0.63 0.12 2.23 0.07 0.70 0.03 0.50 3.38 −
NCM 2.2 0 0.72 0 2.52 0 0.73 0 0.42 3.52 4.07
LCM 1.92 0 0.63 0 2.21 0 0.64 0 0.37 3.09 8.64
NPCC 2.2 0 0.67 0 2.51 0 0.68 0 0.38 3.52 4.07
LPCC 2 0 0.58 0 2.23 0 0.57 0 0.32 3.12 7.76

P = 1.2[1, 1, 0, 0, 0, 0] bar

Experiment 1.45 0.13 1.26 0.05 3.55 0.14 1.34 0.13 1.65 4.58 −
NCM 1.67 0 1.47 0 3.62 0 1.48 0 1.81 4.85 6.17
LCM 1.29 0 1.06 0 2.62 0 1.07 0 1.26 3.52 22.94
NPCC 1.91 0 1.50 0 3.57 0 1.48 0 1.57 4.83 5.74
LPCC 1.63 0 1.07 0 2.63 0 1.07 0 0.99 3.58 21.63

P = 0.9[1, 1, 1, 1, 0, 0] bar

Experiment 3.92 -1.15 1.05 -0.91 3.12 1.72 1.22 1.25 2.14 6.24 −
NCM 4.58 -1.01 1.07 -1.02 3.40 1.87 1.10 1.90 2.20 7.00 12.17
LCM 2.72 -0.53 0.62 -0.53 2.11 1.08 0.63 1.09 1.19 4.11 34.14
NPCC 4.40 -0.78 1.02 -0.77 3.53 1.75 1.00 1.72 1.69 6.63 6.24
LPCC 2.6 -0.32 0.66 -0.32 2.53 0.82 0.66 0.81 0.70 4.04 35.26

P = 0.9[1, 1, 0, 0, 1, 1] bar

Experiment 3.87 1.22 0.97 0.95 3.02 -1.46 1.20 -1.56 2.17 6.18 −
NCM 4.59 1.01 1.07 1.04 3.38 -1.90 1.10 -1.90 2.20 7.00 13.34
LCM 2.72 0.53 0.62 0.54 2.10 -1.09 0.63 -1.09 1.19 4.11 33.45
NPCC 4.41 0.78 1.02 0.75 3.55 -1.71 1.00 -1.72 1.69 6.63 7.35
LPCC 2.83 0.35 0.58 0.34 2.45 -0.98 0.57 -0.99 0.82 4.18 34.59

P = 1.2[0, 0, 1, 1, 1, 1] bar

Experiment 1.25 0.11 -1.55 0.08 7.12 0.15 -1.92 0.20 4.72 8.88 −
NCM 1.44 0 -2.12 0 8.00 0 -2.16 0 5.59 10.32 14.88
LCM 1.07 0 -1.22 0 3.51 0 -1.23 0 2.18 4.60 48.80
NPCC 2.35 0 -2.71 0 7.39 0 -2.69 0 4.44 9.72 8.20
LPCC 1.93 0 -1.45 0 3.51 0 -1.46 0 1.50 4.75 47.13

P = 0.9[1, 1, 1, 1, 1, 1] bar

Experiment 8.85 0.11 0.12 0.10 8.92 0.14 0.07 0.05 0.31 12.57 −
NCM 9.34 0 0 0 9.34 0 0 0 0.28 13.22 5.16
LCM 3.66 0 0 0 3.66 0 0 0 0.18 5.18 58.80
NPCC 8.36 0 0 0 8.36 0 0 0 0.26 11.83 5.90
LPCC 3.67 0 0 0 3.67 0 0 0 0.16 5.23 58.40

displacements were recorded by an Aurora tracker attached
to the overall tip. Compliance errors between simulations
and experiments were described using Frobenius norms and
defined by (42). Extension 3 reports on the compliance
measurement in this experiment.

Figure 16 displays the simulated compliance ellipsoids
for a manipulator made of two segments and the captured
robot images from experiments under six configurations.
The compliance ellipsoids are scaled by a factor of 0.1
for visualisation purposes. The two robots are coloured
in blue and red, and the connection part is black. The
figure demonstrates that our model is applicable to robots
made of two robotic segments and is highly aligned with
the experimental results, returning maximum tip position
errors of less than 6.0 mm. Table 6 details the validation
results for the compliance matrices. The results show that
the compliance modelling errors, evaluated by Frobenius
norms, are between 10% ∼ 20%. Compared to the Frobenius
norms of the compliance matrices from Table 5, the values in
Table 6 at the tip of the robot made of two robotic segments
are generally 5 ∼ 10 times larger.For instance, forces on the
order of 0.1 N typically result in displacements on the order
of 1 cm when the robot made of two robotic segments has a
bending motion. In contrast, tip forces on the order of 1 N
produce displacements on the order of 1 cm for one robotic
segment. The tip compliance of the robot made of two
robotic segments exhibits significant compliant behaviour in

the x- and y-directions, while the compliance along the z-
axis is much smaller, as shown in Figure 16(f) and the last
row of Table 6.

6 Discussions and conclusion

To model the stiffness/compliance of soft robots and
achieve the configuration-dependent stiffness analysis, a Lie
theory-based stiffness modelling and analysis framework
was proposed and experimentally validated using soft
manipulators made of one and two robotic segments.
In addition, a thorough stiffness/compliance analysis is
presented both from simulation and experiment. The main
findings of soft manipulators with an elongation capability
can be summarised as:

1. Large elongations in soft robotic manipulators often
introduce nonlinear responses. We proposed two
model sets, linear model sets (LPCC and LCM) for
small elongations and nonlinear model sets (NPCC
and NCM) for large elongations. This improves the
modelling accuracy in both forward kinematics and
stiffness/compliance.

2. The overall compliance of soft manipulators is
influenced by the elongation, for example, the used
pneumatic-driven manipulators show a compliant
behaviours under a high pressure level.
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Figure 16. Results of Experiment 3 - Simulated compliance ellipsoids at the tip of a a manipulator of two robotic segments under six
configurations when (a) P1 = P2 = P7 = P8 = 0.9 bar, (b) P1 = P2 = P9 = P10 = P11 = P12 = 0.9 bar, (c) P1 = P2 = P9 = P10 =
1.2 bar, (d) P5 = P6 = P9 = P10 = 1.2 bar, (e) P1 = P2 = P5 = P6 = P7 = P8 = P9 = P10 = 0.9 bar, and (f) P1 ∼ P12 = 0.6 bar.
An image of the robot’s configuration from experiments are included with the simulations. The experimental and simulated overall tip
positions are presented with the unit of cm.

6.1 Nonlinear compensation

Experiment 1 shows the nonlinearity appears for an
elongation ratio over 0.15 in cases of elongation (see
Figure 12(a)) and 0.1 in cases of bending (see Figures 12(b)-
(c)). Below these elongation ratios, the material deforms in
a linear manner. The results show that these nonlinearity
can be captured by the proposed compensation method,
for the nonlinear Cosserat rod and PCC model both show

a satisfactory efficacy reproducing the nonlinear responses
compared to the linear models. The nonlinearity introduced
by elongation further influences the forward kinematics of
robots, with the increase of the pressure (see Figure 13). In
addition, the results show that both Cosserat models return
lower error values compared to the PCC models, as the
constant curvature might not be strictly satisfied. Further,
the predicted elongation displacement and bending angle of
the four models in Figure 12 are slightly higher than the

Table 6. Results for the validation of spatial compliance in Experiment 3 using a manipulator made of two robotic segments.

Setup Model c11 c21 c31 c12 c22 c32 c13 c23 c33 || · ||F Error (%)
[cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N] [cm/N]

P = 0.9[1, 1, 0, 0, 0, 0 Experiment 9.74 4.50 10.20 5.50 34.45 3.35 5.84 4.12 19.75 43.45 −
1, 1, 0, 0, 0, 0] bar NCM 7.84 0 11.81 0 36.99 0 11.86 0 23.88 47.75 9.87

P = 0.9[1, 1, 0, 0, 0, 0 Experiment 22.02 3.54 9.86 6.35 32.10 2.74 9.87 3.21 4.35 42.51 −
0, 0, 1, 1, 1, 1] bar NCM 28.02 0 12.67 0 35.46 0 12.73 0 6.65 49.08 15.46

P = 1.2[1, 1, 0, 0, 0, 0 Experiment 19.87 -7.89 15.21 -7.98 30.05 9.95 14.21 7.32 19.75 48.99 −
0, 0, 1, 1, 0, 0] bar NCM 23.04 -9.99 16.13 -9.96 34.64 8.83 16.21 8.93 23.75 56.34 15.02

P = 1.2[0, 0, 0, 0, 1, 1 Experiment 19.38 -8.75 -13.32 -9.70 30.12 -11.10 -13.21 -7.64 19.86 48.80 −
0, 0, 1, 1, 0, 0] bar NCM 22.97 -10.06 -15.83 -9.85 33.96 -9.54 -15.84 -9.57 23.75 56.02 14.80

P = 0.9[1, 1, 0, 0, 1, 1 Experiment 39.65 8.97 23.14 15.70 49.65 -21.15 18.72 -12.53 20.50 79.21 −
1, 1, 1, 1, 0, 0] bar NCM 45.75 11.08 26.28 11.70 59.20 -15.79 26.52 -15.63 27.12 92.09 16.26

P = 0.6[1, 1, 1, 1, 1, 1 Experiment 56.21 3.21 2.42 2.55 59.32 3.45 0.08 0.05 0.49∗ 81.93 −
1, 1, 1, 1, 1, 1] bar NCM 67.72 0 0 0 67.72 0 0 0 0.54 95.77 16.88

Note: the value with ∗ was identified using a 0.2 N force, i.e., the value of c33 when P = [0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6] bar.
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measured results when the pressure is low, which may come
from the linearisation of the material model.

Our framework’s nonlinear compensation procedures are
based on the theoretical support of the nonlinear matrix
structure analysis approach outlined in Gazzola et al. (2018).
This allows our framework to consider large deformations
using a linear strain-stress relation without the need to
change the fundamental models. Similar updates have been
reported in (Gazzola et al. 2018; Sadati et al. 2021) to
account for the cross-sectional deformations resulting from
elongation. It is worth noting that by introducing the stiffness
update (see (24)), our compensation approach provides an
approximation that is equivalent to the hyper-elastic Neo-
Hookean and Mooney-Rivlin models, particularly when
the longitudinal strain is below 30% (Gazzola et al.
2018). Figure 12 illustrates that our compensation approach
remains effective even when the longitudinal strain is up to
approximately 60%.

6.2 Compliance/Stiffness modelling and
analysis

Experiment 2 corroborates that the compliance is config-
uration dependent, in addition, it increases with the pres-
sure. The compliance results of the two nonlinear models
show less errors than the two linear models, thanks to the
proposed nonlinear compensation method. As concluded
in Table 5, there are differences in the compliance ma-
trices when P changes from [0.9, 0.9, 0.9, 0.9, 0, 0] bar to
[0.9, 0.9, 0, 0, 0.9, 0.9] bar, but their Frobenius norms are
similar. This can be explained by that the configuration
determines the shape of the compliance ellipsoids, whereas
the pressurisation level determines its size. Experiment 3
provides additional validation results for a robot consisting of
two robotic segments. According to Table 6, the compliance
modelling errors for the two-segment robot are between
10% ∼ 20%. By contrast, Table 5 indicates that compliance
modelling errors for a single robotic segment using the NCM
are smaller and between 5% ∼ 15% As Figures 13 and 16
show, errors in forward kinematics modelling can result in
compliance errors, since compliance is dependent on the
configuration. The increased modelling errors observed in
Experiment 3 may be attributed to error propagation, as
errors in the first manipulator accumulate in the second ma-
nipulator. Additionally, it should be noted that discrepancies
between the two manipulators resulting from the fabrication
process (e.g., the use of reinforced fibres) could introduce
unmodelled errors.

The experimental error sources of the compliance
validation mainly come from: firstly, the measured stiffness
values are influenced by the pulling displacement under
different configurations. For instance, in directional stiffness
validation, the measured stiffness in the x-axis is 1.40 N

cm

when the tip is pulled by 0.4 cm. This is around 0.35 N
cm

larger than the stiffness of 1.05 N
cm under 0.25 cm pulling

displacement. Secondly, the pressurised chambers may
stiffen the robot to some extent. For instance, the predicted
compliance values from the nonlinear models are larger than
experimental data when the pressure increases (see Figure 15
and Table 5). In addition, the Aurora tracking system could

Table 7. Summary of the computational time.

Model Average time [s] Time @ Pmax [s]

Simulation 1:
Figure 6(a)

LPCC 0.0099 0.0087
LCM 0.89 1.07
NPCC 0.07 0.12
NCM 2.98 5.03

Simulation 1:
Figure 6(b)

LPCC 0.018 0.019
LCM 1.06 1.26
NPCC 0.12 0.20
NCM 3.21 5.41

Simulation 2:
Figure 8(a)

NCM 4.37 8.10

Simulation 2:
Figure 8(b)

NCM 4.87 8.82

Simulation 2:
Figure 8(c)

NCM 2.83 5.01

Simulation 2:
Figure 9(a)

NCM 6.14 10.96

Simulation 2:
Figure 9(b)

NCM 6.19 11.02

Simulation 3:
Figure 10

NCM 4.87 5.03

Experiment 1:
Figure 12(a)

LPCC 0.0095 0.0078
LCM 1.37 1.72
NPCC 0.12 0.20
NCM 3.49 6.66

Experiment 1:
Figure 12(b)

LPCC 0.011 0.0076
LCM 0.92 0.98
NPCC 0.10 0.18
NCM 3.05 4.92

Experiment 1:
Figure 12(c)

LPCC 0.015 0.012
LCM 0.97 1.09
NPCC 0.12 0.22
NCM 3.08 5.11

Experiment 1:
Figure 13(a)

LPCC 0.0092 0.0071
LCM 0.84 1.04
NPCC 0.10 0.18
NCM 2.98 4.77

Experiment 1:
Figure 13(b)

LPCC 0.011 0.0095
LCM 0.89 1.11
NPCC 0.12 0.20
NCM 3.31 5.45

Experiment 2:
Table 5

NCM 3.94 6.78

Experiment 3:
Table 6

NCM 6.32 9.78

Time @ Pmax denotes the computation time under the maximum
pressure in a simulation or an experiment.

introduce measurement errors (≤ 0.5 mm) and the pressure
regulators could add pressure control errors (≤ 0.03 bar.)

The coordinate-independent stiffness analysis shows that
soft robots with elongation capability have an enlarged
workspace, however, with a lower stiffness (see Section 4.3).
This is in agreement with the analysis in Section 4.2: When
the bending angle increases, the overall stiffness decreases.
More specifically, the deformation of the cross-section
resulting from the elongation reduces the overall stiffness
(e.g., see (24)). There is a trade-off between the flexibility
introduced by elongation and the stiffness capability.
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6.3 Remarks of proposed methodology

The proposed stiffness modelling and analysis framework
can account for nonlinear responses resulting from
elongation, even when a linear strain-stress relationship
is used, thus improving the accuracy of the model. The
framework can also directly incorporate well-investigated
forward kinematics models in the field of soft robotics,
such as the PCC and Cosserat rod model, to deliver a
configuration-dependent compliance modelling and analysis,
as reported in Section 2, and detailed stiffness/compliance
analysis tools are presented. The framework also reveals the
compliance at the tip position and the overall distribution
of compliance along the manipulator. Furthermore, the
proposed framework has been extensively validated through
simulations and experiments, with detailed analysis using
soft manipulators consisting of one and two robotic segments
(see Sections 4 and 5).

Moreover, the Lie-theory based stiffness modelling pre-
serves the inherent symmetrical property of the compliance
matrix as the total compliance is built on the exact material
compliance. By contrast, the methods in Rucker et al. (2011);
Smoljkic et al. (2014); Black et al. (2017) cannot strictly
guarantee such symmetry. In addition, the Cartesian com-
pliance tells how the robot deflect under external loads (see
( (19))), so it can also be utilised for e.g., stiffness or force
control, and perturbation rejection (Mahvash and Dupont
2011; Mustaza et al. 2018; Lai et al. 2021).

6.4 Applicability of the modelling framework

This work proposes a comprehensive stiffness modelling and
analysis framework for soft continuum robots, particularly
for fluidic-driven soft robots made of silicone material.
We chose the STIFF-FLOP manipulator as a test bed
for validating our approach due to its nonlinear strain-
stress relationship caused by large longitudinal elongation,
making it a complex system to model. However, it is
important to note that our proposed methodology is not
restricted to fluidic-driven robots, but can be applied to
other types of manipulators such as tendon-driven and
parallel continuum robots that employ forward kinematics
models built on stiffness density matrices, as demonstrated
in (2) and previous studies (Till et al. (2019); Amanov
et al. (2021); Rucker et al. (2011)). These models leverage
stiffness properties to calculate curvatures and strains from
the actuation space, such as pressure or tendon forces, which
are then used to complete the statics and dynamics models.
To further demonstrate the applicability of our framework
to other robots, we applied it to a parallel continuum robot
of a Stewart–Gough configuration (Black et al. (2017)).
Although simulation results are only presented in Appendix
E as supporting material, they confirm that our framework
has potential to be used in various other robotic systems.

To summarise, the applicability of our framework is
not restricted by the robot types. Rather, it hinges on the
availability of compliance or stiffness properties (either
identified or modelled) of the robotic systems. Forward
kinematics models based solely on curve fitting (Zhao
et al. (2022)) or the length of each bellow (Garbin et al.
(2018)) cannot be utilised with our stiffness modelling

framework since no quantitative stiffness properties are
explicitly incorporated into these statics models.

6.5 Future work
As discussed by Manti et al. (2016), antagonistic actuation
principles can influence the stiffness of soft robots
while maintaining a position, for instance, tendon-driven
robots (Oliver-Butler et al. 2019). As for the fluidic-driven
robots in this study, this stiffening effect is compromised
because the elongation and configuration play a more
important role with regards to changing the overall stiffness.
However, this may still influence the accuracy of the
modelling. As shown in the Experiment 2, the experimental
stiffness can be about 10% ∼ 15% higher than the predicted
stiffness from nonlinear models when the pressure increases.
This may be tackled by taking the stiffness of the pressurised
chambers as a superposition on the stiffness of the main body
of robots in future study (Chikhaoui et al. 2019).

Second, the computations in this study are offline. Our
purpose is to model and analyse the configuration-dependent
compliance, so the real-time performance is beyond the
scope of this study. All simulations and experiments were
executed on a computer equipped with an Intel i7 processor
and 8GB RAM, running Matlab R2019. The computational
time for the simulations conducted in Section 4 and Section 5
is summarised in Table 7. Table 7 demonstrates that the
computational time tends to be higher under the maximum
actuation pressure level, in particular for the Cosserat rod
model sets. In addition, the average computational time is
about 0.01-0.02 s, 0.07-0.12 s, 0.8-1.5 s, and 3-6.3 s for
the LPCC, NPCC, LCM and NCM models, respectively.
As such, both the (non)linear PPC model sets need less
computational time than the (non)linear Cosserat rod model
sets. Meanwhile, the nonlinear model sets (i.e., the NPCC
and NCM) have a higher computation complexity compared
to the linear model sets (i.e., the LPCC and LCM), due to
the iteration procedures from the nonlinear compensation.
Given the real-time computation speed of the Cosserat model
was raised around 1 kHz (Till et al. 2015), future studies will
also explore how to achieve real-time stiffness modelling and
control computation based on the methodology proposed in
this study.

The nonlinear compensation in Section 2.3 is comparable
to the nonlinear matrix structural analysis in Naselli and
Mazzolai (2021), on the other hand, the iterative updates
increase the computation complexity (see Table 7). As such,
it is also worthy to incorporate the exact hyper-elastic models
into the proposed framework (Marechal et al. 2021) to ease
the computation. In addition, it is also encouraging to explore
the research in the solid mechanics to study the influences
of the cross-sectional deformation (Kumar and Mukherjee
2011).

In summary, the proposed stiffness modelling and
analysis method can be used to quantitatively assess the
stiffness/compliance response of soft robots under different
configurations, which may provide new insights to explore
on-demand stiffness analysis and optimisation of soft robots
with regards to application requirements. Moreover, in
serially-connected soft robots, the proposed method could
be used to optimise the configuration with high stiffness
capability along a desired direction.
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Appendix A. Index to multimedia Extensions
The multimedia Extensions associated with the paper are
listed in Table 8.

Appendix B. Basics of Lie theory
A twist T written in Plücker axis coordinate and a wrench
W written in Plücker ray coordinate are

T = [vT ωT ]T , W = [fT mT ]T , (44)

where v is a linear velocity vector, ω is a angular velocity
vector, f is a force vector, and m is a moment vector.
The twist vector could also be written in the form of an
isomorphism matrix in Lie algebra by

T̂ =

[
ω̂ v

0[1×3] 0

]
∈ se(3), ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
(45)

ω̂ ∈ so(3) is a skew-symmetric matrix with ω̂T = −ω̂ and
its inverse operation is (ω̂)∨ = ω (Dai 2015). The mapping
from Lie algebra se(3) to the Lie group SE(3) can be
obtained by taking the exponential of T̂

g = eT̂ =

[
R[3×3] p[3×1]

0[1×3] 1

]
∈ SE(3), R ∈ SO(3), p ∈ R3.

(46)
Here, g is the homogeneous transformation matrix which
contains the rotation matrix R and the translation vector
p (Wang and Dai 2023).

Considering two screws Sa,Sb, both are in the form
of Plücker ray coordinate and written in Cartesian frames
{a} and {b}, respectively. In such circumstances, the
transformation of screws between different frames can be
described using adjoint transformation matrix Adab by

Sa = AdabS
b =

[
Rab 0[3×3]

p̂abRab Rab

]
Sb. (47)

pab is the translational vector, Rab is the rotational matrix of
the frame {b} with regards to the frame {a}, p̂ab is the skew-
symmetric matrix in the form of (45). The inverse and the
inverse transpose of the adjoint transformation matrix are

Ad−1
ab =

[
RT

ab 0
−RT

abp̂ab RT
ab

]
,Ad−T

ab =

[
Rab p̂abRab

0 Rab

]
.

(48)
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Table 8. Multimedia content.

Extension Media Type Description

1 Video The comparison results between simulations and experiments from the Experiment 1.
2 Video The experimental stiffness and compliance measurement in the Experiment 2.
3 Video The experimental compliance measurement for a two-segment robot in the Experiment 3.


cos2 ϕi(cos (κisi)− 1) + 1 sinϕi cosϕi(cos (κisi)− 1) cosϕi sin (κisi)

cosϕi(1−cos (κisi))
κi

sinϕi cosϕi(cos (κisi)− 1) cos2 ϕi(1− cos (κisi)) + cos (κisi) sinϕi sin (κisi)
sinϕi(1−cos (κisi))

κi

− cosϕi sin (κisi) − sinϕi sin (κisi) cos (κisi)
sin (κisi)

κi

0 0 0 1

 . (43)

Similarly, if two screws Sa,Sb are both in the form of
Plücker axis coordinates, (47) can be rewritten as

∆Sa = Adab(∆Sb). (49)

∆ is the elliptical polar operator that interchanges the first
and the last three components of a screw as defined in

∆ =

[
0[3×3] I[3×3]

I[3×3] 0[3×3]

]
,∆−1 = ∆,∆T = ∆, (50)

where ∆Adab∆ equals Ad−T
ab . This yields

Sa = Ad−T
ab Sb. (51)

More details can refer to Murray et al. (1994); Qiu and Dai
(2021).

Appendix C. Transformation matrix in the
PCC model
The general form of gi(i+1) based on the PCC model is
shown in (43).

Appendix D. Orthonormality of the integrated
rotation matrix
As reported in Section 3.3, we used a Fourth-order Runge-
Kutta method to achieve numerical integration, with a total
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Figure 17. Truncation error of the rotation matrix when using a
Fourth-order Runge-Kutta method, when P1 = P2 = 1.5 bar, P3 =
P4 = 1.0 bar. (a) The orthonormality error of the integrated rotation
matrix at the tip of the soft manipulator when the discretised
element number is between 1 and 50. (b) The The orthonormality
error of the integrated rotation matrix along the manipulator (s ∈
(0, l)) when the discretised number is 50.)

discretised number of 50. To show the integration is accurate
and feasible maintaining the orthonormality of the integrated
rotation matrices, the truncation error is defined in (52).

Rerr = Roi(s)
TRoi(s)− I3×3 (52)

where I3×3 is a 3× 3 identity matrix. The Frobenius norm
of Rerr is then calculated and reported in Figure 17.
Figure 17(a) reports the Frobenius norm of the integrated
rotational matrix at the tip of the manipulator, which shows
the Frobenius norm of the error in the scale of 10−9 ∼
10−10. Moreover, Figure 17(b) reports the truncation errors
along the integration interval, which are below 2.5× 10−10.
These results demonstrate that the orthonormality of rotation
matrices is reserved. The results are in line with Till (2019).
A high order Runge-Kutta method is usually sufficient and
acceptable to be applied in Lie group.

Appendix E. Simulation of the
configuration-dependent compliance modelling
for a parallel continuum robot
To demonstrate the transferability of our stiffness modelling
and analysis framework, we conducted simulations for a
parallel continuum robot of a Stewart-Gough configura-
tion (Black et al. 2017). This robot consists of six flexible
rods, and its configuration can be varied by controlling the
length of each rod. The forward kinematics model used was
established based on the Cosserat rod model (Till et al. 2019),
and the authors have made their open-source code available
on Github under the MIT License, which we incorporated
into our framework. Our simulation results demonstrate the
effectiveness of our framework in achieving compliance
modelling and analysis. It should be noted that the cross-
sectional deformation of the rods in this case is negligible,
and thus, the LCM of our framework was adopted.

The tip compliance Co
q (lq) of each rod (the tip stiffness

Ko
q (lq) = Co

q (lq)
−1) is derived based on (4) and integrated

with the forward kinematics model. q ∈ [1, 6] is the index
for each rod. As the whole robot has a parallel configuration,
the tip stiffness Ko

t of the robot equals the summation of the
stiffness of all rods (Qiu and Dai 2021), which yields (53).

Ko
t =

6∑
q=1

Ko
q (lq) (53)

All stiffness and compliance matrices are expressed in the
global frame, and the compliance of the tip is visualised
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Figure 18. Simulation results for the compliance model of
a parallel continuum robot of a Stewart–Gough configuration,
visualised using compliance ellipsoids when the robot (a) elongates
(b) translates (c) bends. The dimension of the compliance ellipsoids
is scaled by 250, 60 and 15 for visualisation.

using ellipsoids, as described in Section 2.4. The results of
this analysis, which include three different configurations,
are presented in Figure 18.

Figure 18(a) shows the computational results when the
compliance along the x- and y-axes is isotropic and around
110 times higher than the compliance along the z-axis.
Figure 18(b) reports on the results when the robot tip
translates to [0.1, 0, 0.4] m while keeping the bending angle
at 0◦. The overall compliance of the robot increases, and the
compliance along the x-axis is about 2 times higher than that
along the y-axis. The compliance further increases when the

robot bends (see Figure 18(c)), and the compliance along the
x- and y-axes becomes more isotropic, which yields a similar
tendency with the results from Figure 8(a). As summarised
in Table 1, our compliance modelling framework does not
require a finite differentiation procedure, compared to other
prominent work by, e.g., Rucker et al. (2011) and Black et al.
(2017).
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